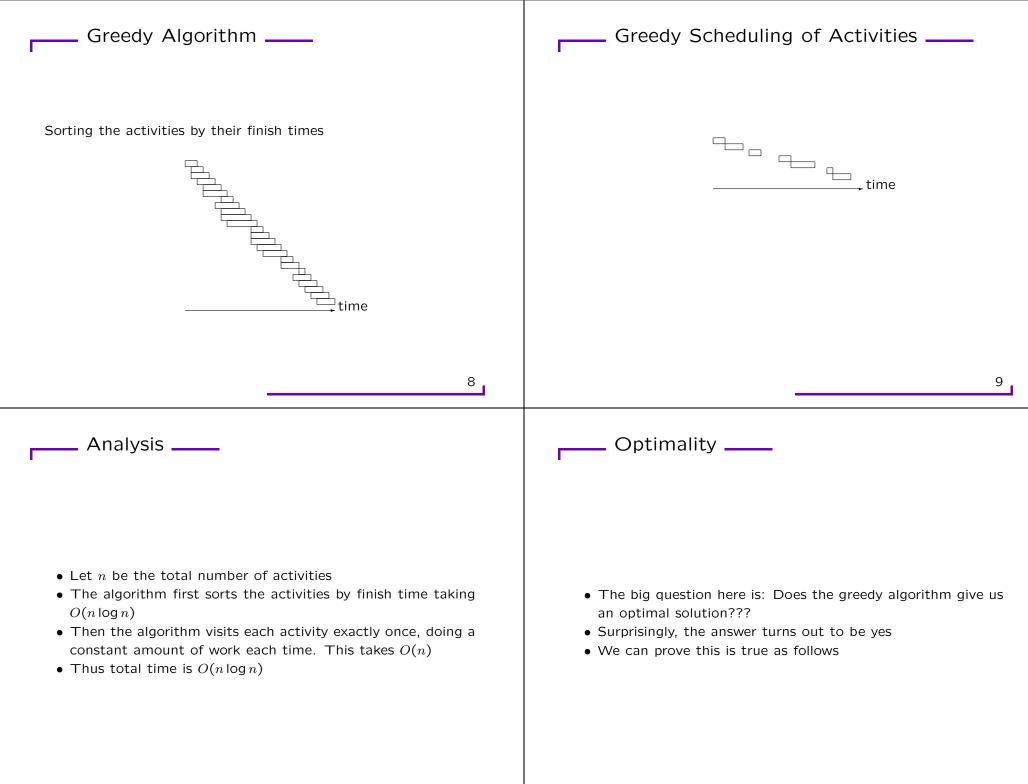
	Today's Outline
CS 362, Lecture 9 Jared Saia University of New Mexico	 Greedy Algorithm Intro Activity Selection Knapsack
	1
Greedy Algorithms	Activity Selection
 "Greed is Good" - Michael Douglas in Wall Street A greedy algorithm always makes the choice that looks best at the moment Greedy algorithms do not always lead to optimal solutions, but for many problems they do In the next week, we will see several problems for which greedy algorithms produce optimal solutions including: activity selection, fractional knapsack. When we study graph theory, we will also see that greedy algorithms can work well for computing shortest paths and finding minimum spanning trees. 	 You are given a list of programs to run on a single processor Each program has a start time and a finish time However the processor can only run one program at any given time, and there is no preemption (i.e. once a program is running, it must be completed)

Another Motivating Problem _____ Example _____ Imagine you are given the following set of start and stop times for activities • Suppose you are at a film fest, all movies look equally good, and you want to see as many complete movies as possible • This problem is also exactly the same as the activity selection problem. time 4 5 Ideas _____ Greedy Activity Selector _____ 1. Sort the activities by their finish times 2. Schedule the first activity in this list • There are many ways to optimally schedule these activities 3. Now go through the rest of the sorted list in order, scheduling • Brute Force: examine every possible subset of the activites and find the largest subset of non-overlapping activities activities whose start time is after (or the same as) the last • Q: If there are *n* activities, how many subsets are there? scheduled activity • The book also gives a DP solution to the problem (note: code for this algorithm is in section 16.1)

6

7



Proof of Optimality _____

Proof of Optimality _____

- Let A be the set of activities selected by the greedy algorithm
- Consider *any* non-overlapping set of activities *B*
- We will show that $|A| \ge |B|$ by showing that we can replace each activity in B with an activity in A
- This will show that A has at least as many activities as any other non-overlapping schedule and thus that A is optimal.

- Let a_x be the *first* activity in A that is different than an activity in B
- Then $A = a_1, a_2, \dots, a_x, a_{x+1}, \dots$ and $B = a_1, a_2, \dots, b_x, b_{x+1}, \dots$
- But since A was chosen by the greedy algorithm, a_x must have a finish time which is earlier than the finish time of b_x
- Thus $B'=a_1,a_2,\ldots,a_x,b_{x+1},\ldots$ is also a valid schedule $(B'=B-\{b_x\}\cup\{a_x\}$)
- Continuing this process, we see that we can replace each activity in *B* with an activity in *A*. QED

	12	13	
What?		Greedy pattern	

- We wanted to show that the schedule, *A*, chosen by greedy was optimal
- To do this, we showed that the number of activities in A was at least as large as the number of activities in any other non-overlapping set of activities
- To show this, we considered any arbitrary, non-overlapping set of activities, *B*. We showed that we could replace each activity in *B* with an activity in *A*

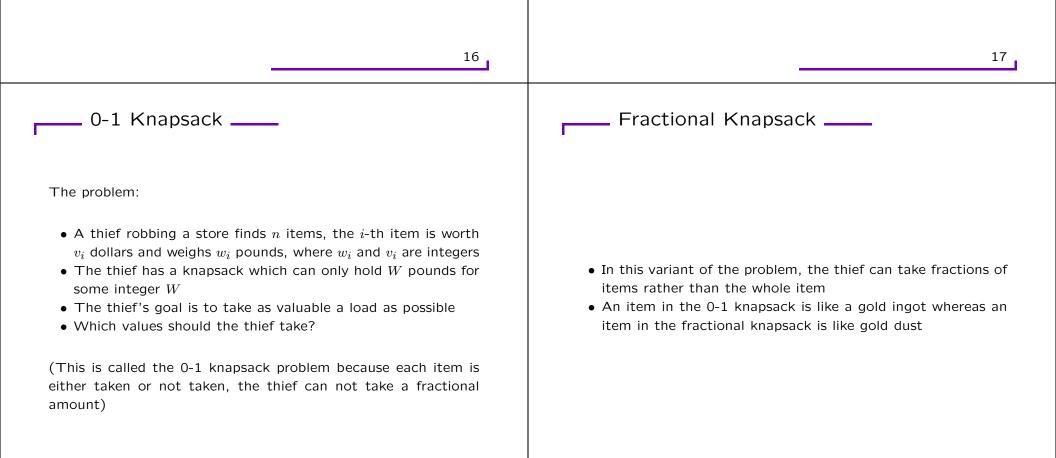
- The problem has a solution that can be given some numerical value. The "best" (optimal) solution has the highest/lowest value.
- The solutions can be broken down into steps. The steps have some order and at each step there is a choice that makes up the solution.
- The choice is based on what's best at a given moment. Need a criterion that will distinguish one choice from another.
- Finally, need to **prove** that the solution that you get by making these local choices is indeed optimal

Activity Selection Pattern

. Knapsack Problem _____

- The value of the solution is the number of non-overlapping activities. The best solution has the highest number.
- The sorting gives the order to the activities. Each step is examining the next activity in order and decide whether to include it.
- In each step, the greedy algorithm chooses the activity which extends the length of the schedule as little as possible

- Those problems for which greedy algorithms can be used are a subset of those problems for which dynamic programming can be used
- So, it's easy to mistakenly generate a dynamic program for a problem for which a greedy algorithm suffices
- Or to try to use a greedy algorithm when, in fact, dynamic programming is required
- The knapsack problem illustrates this difference
- The 0-1 knapsack problem requires dynamic programming, whereas for the fractional knapsack problem, a greedy algorithm suffices



Analysis _____ Greedy _____ We can solve the fractional knapsack problem with a greedy algorithm: • If there are n items, this greedy algorithm takes $O(n \log n)$ time • We'll show in the in-class exercise that it returns the correct 1. Compute the value per pound (v_i/w_i) for each item solution 2. Sort the items by value per pound • Note however that the greedy algorithm does *not* work on 3. The thief then follows the greedy strategy of always taking the 0-1 knapsack as much as possible of the item remaining which has highest value per pound. 20 21 Optimality of Greedy on Fractional Failure on 0-1 Knapsack • Say the knapsack holds weight 5, and there are three items • Let item 1 have weight 1 and value 3, let item 2 have weight 2 and value 5, let item 3 have weight 3 and value 6 • Then the value per pound of the items are: 3, 5/2, 2 respec-• Greedy is not optimal on 0-1 knapsack, but it is optimal on fractional knapsack tively • To show this, we can use a proof by contradiction • The greedy algorithm will then choose item 1 and item 2, for a total value of 8 • However the optimal solution is to choose items 2 and 3, for a total value of 11

Proof _____

- Assume the objects are sorted in order of cost per pound. Let v_i be the value for item *i* and let w_i be its weight.
- Let x_i be the *fraction* of object *i* selected by greedy and let V be the total value obtained by greedy
- Consider some arbitrary solution, B, and let x'_i be the fraction of object i taken in B and let V' be the total value obtained by B
- We want to show that $V' \leq V$ or that $V V' \geq 0$

- Let k be the smallest index with $\boldsymbol{x}_k < 1$
- Note that for i < k, $x_i = 1$ and for i > k, $x_i = 0$
- You will show that for all *i*,

Proof _____

$$(x_i - x_i')rac{v_i}{w_i} \geq (x_i - x_i')rac{v_k}{w_k}$$

25

Proof _

$$V - V' = \sum_{i=1}^{n} x_i v_i - \sum_{i=1}^{n} x'_i v_i$$
 (1)

$$= \sum_{i=1}^{n} (x_i - x'_i) * v_i$$
 (2)

$$= \sum_{i=1}^{n} (x_i - x'_i) * w_i \left(\frac{v_i}{w_i}\right)$$
(3)

$$\geq \sum_{i=1}^{n} (x_i - x'_i) * w_i \left(\frac{v_k}{w_k}\right)$$
(4)

$$\geq \left(\frac{v_k}{w_k}\right) * \sum_{i=1}^n (x_i - x'_i) * w_i \tag{5}$$

$$\geq$$
 0 (6)

26

- Note that the last step follows because $\frac{v_k}{w_k}$ is positive and because:

$$\sum_{i=1}^{n} (x_i - x'_i) * w_i = \sum_{i=1}^{n} x_i w_i - \sum_{i=1}^{n} x'_i w_i$$
(7)

 $= W - W' \tag{8}$

- \geq 0. (9)
- Where W is the total weight taken by greedy and W' is the total weight for the strategy B
- We know that $W \geq W'$

Proof _____

___ In-Class Exercise _____

Consider the inequality:

$$(x_i - x_i')\frac{v_i}{w_i} \ge (x_i - x_i')\frac{v_k}{w_k}$$

28

- Q1: Show this inequality is true for i < k
- Q2: Show it's true for i = k
- Q3: Show it's true for i > k