
CS 362, Lecture 5

Jared Saia

University of New Mexico

Today’s Outline

• Annihilator Wrap-up

• Intro Dynamic Programming

• String Alignment
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Limitations

• Our method does not work on T (n) = T (n−1)+ 1
n or T (n) =

T (n − 1) + lgn

• The problem is that 1
n and lgn do not have annihilators.

• Our tool, as it stands, is limited.

• Key idea for strengthening it is transformations
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Transformations Idea

• Consider the recurrence giving the run time of mergesort

T (n) = 2T (n/2) + kn (for some constant k), T (1) = 1

• How do we solve this?

• We have no technique for annihilating terms like T (n/2)

• However, we can transform the recurrence into one with

which we can work
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Transformation

• Let n = 2i and rewrite T (n):

• T (20) = 1 and T (2i) = 2T (2i

2 ) + k2i = 2T (2i−1) + k2i

• Now define a new sequence t as follows: t(i) = T (2i)

• Then t(0) = 1, t(i) = 2t(i − 1) + k2i
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Now Solve

• We’ve got a new recurrence: t(0) = 1, t(i) = 2t(i − 1) + k2i

• We can easily find the annihilator for this recurrence

• (L−2) annihilates the homogeneous part, (L−2) annihilates

the non-homogeneous part, So (L−2)(L−2) annihilates t(i)

• Thus t(i) = (c1i + c2)2
i
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Reverse Transformation

• We’ve got a solution for t(i) and we want to transform this

into a solution for T (n)

• Recall that t(i) = T (2i) and 2i = n

t(i) = (c1i + c2)2
i (1)

T (2i) = (c1i + c2)2
i (2)

T (n) = (c1 lgn + c2)n (3)

= c1n lgn + c2n (4)

= O(n lgn) (5)
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Success!

Let’s recap what just happened:

• We could not find the annihilator of T (n) so:

• We did a transformation to a recurrence we could solve, t(i)

(we let n = 2i and t(i) = T (2i))

• We found the annihilator for t(i), and solved the recurrence

for t(i)

• We reverse transformed the solution for t(i) back to a solu-

tion for T (n)
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Another Example

• Consider the recurrence T (n) = 9T (n
3)+ kn, where T (1) = 1

and k is some constant

• Let n = 3i and rewrite T (n):

• T (30) = 1 and T (3i) = 9T (3i−1) + k3i

• Now define a sequence t as follows t(i) = T (3i)

• Then t(0) = 1, t(i) = 9t(i − 1) + k3i
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Now Solve

• t(0) = 1, t(i) = 9t(i − 1) + k3i

• This is annihilated by (L− 9)(L− 3)

• So t(i) is of the form t(i) = c19
i + c23

i
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Reverse Transformation

• t(i) = c19
i + c23

i

• Recall: t(i) = T (3i) and 3i = n

t(i) = c19
i + c23

i

T (3i) = c19
i + c23

i

T (n) = c1(3
i)2 + c23

i

= c1n2 + c2n

= O(n2)
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In Class Exercise

Consider the recurrence T (n) = 2T (n/4) + kn, where T (1) = 1,

and k is some constant

• Q1: What is the transformed recurrence t(i)? How do we

rewrite n and T (n) to get this sequence?

• Q2: What is the annihilator of t(i)? What is the solution for

the recurrence t(i)?

• Q3: What is the solution for T (n)? (i.e. do the reverse

transformation)
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A Final Example

Not always obvious what sort of transformation to do:

• Consider T (n) = 2T (
√

n) + logn

• Let n = 2i and rewrite T (n):

• T (2i) = 2T (2i/2) + i

• Define t(i) = T (2i):

• t(i) = 2t(i/2) + i
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A Final Example

• This final recurrence is something we know how to solve!

• t(i) = O(i log i)

• The reverse transform gives:

t(i) = O(i log i) (6)

T (2i) = O(i log i) (7)

T (n) = O(logn log logn) (8)
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DP Intro

“Those who cannot remember the past are doomed to repeat

it.” - George Santayana, The Life of Reason, Book I: Introduc-

tion and Reason in Common Sense (1905)

What is Dynamic Programming?

• Dynamic Programming is basically “Divide and Conquer”

with memorization

• Basic Trick is: Don’t solve the same problem more than

once!
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Fibonacci Example

Consider the following procedure for computing the n-th Fi-

bonacci number:

Fib(n){

if (n<2)

return n;

else

return Fib(n-1) + Fib(n-2);

}
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Analysis

• Q: What is the runtime of Fib?

• A: Except for recursive calls, the entire algorithm takes a

constant number of steps. If T (n) is the run time of the

algorithm on input n, then we can say that:

T (0) = T (1) = 1, T (n) = T (n − 2) + T (n − 1) + 1

• It’s easy to show by induction that T (n) = 2Fn+1 − 1. This

is very bad!
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Aside

• Q: How can we solve T (n) exactly?

• A: We solved this recurrence using annihilaotrs in the last

lecture to get T (n) = c1φn + c2φ̂n + c31
n where φ = 1+

√
5

2

and φ̂ = 1−
√

5
2 .
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Aside II

• If we solve for constants, we get that:

T (0) = 1 = c1 + c2 + c3

T (1) = 1 = c1φ + c2φ̂ + c3

T (2) = 3 = c1φ2 + c2φ̂2 + c3

Solving this system of linear equations (using Gaussian elim-

ination) gives:

c1 = 1 +
1√
5

, c2 = 1 − 1√
5

, c3 = −1,
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Aside III

• So our final solution is

T (n) =

(

1 +
1√
5

)

φn +

(

1 − 1√
5

)

φ̂n − 1 = Θ(φn).
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The Problem

• The reason Fib is so slow is that it computes the same Fi-

bonacci numbers over and over

• In general, there are Fk−1 recursive calls to Fib(n-k)

• We can greatly speed up the algorithm by writing down the

results of the recursive calls and looking them up if needed
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DP-Fib

DP-Fib(n){

if (n<2)

return n;

else{

if (F[n] is undefined){

F[n] = DP-Fib(n-1) + DP-Fib(n-2);

}

return F[n];

}}
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Analysis

• For every value of x between 1 and n, DP-Fib(x) is called

exactly one time.

• Each call does constant work

• Thus runtime of DP-Fib(n) is Θ(n) - a huge savings
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Take Away

Dynamic Programming is different than Divide and Conquer in

the following way:

• “Divide and Conquer” divides problem into independent sub-

problems, solves the subproblems recursively and then com-

bines solutions to solve original problem

• Dynamic Programming is used when the subproblems are not

independent, i.e. the subproblems share subsubproblems

• For these kinds of problems, divide and conquer does more

work than necessary

• Dynamic Programming solves each subproblem once only and

saves the answer in a table for future reference
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The Pattern

• Formulate the problem recursively.. Write down a formula

for the whole problem as a simple combination of answers to

smaller subproblems

• Build solutions to your recurrence from the bottom up.

Write an algorithm that starts with the base cases of your

recurrence and works its way up to the final solution by con-

sidering the intermediate subproblems in the correct order.

Note: Dynamic Programs store the results of intermediate sub-

problems. This is frequently but not always done with some type

of table.
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Edit Distance

• The edit distance between two words is the minimum number

of letter insertions, letter deletions, and letter substitutions

required to transform one word into another. For example,

the edit distance between FOOD and MONEY is at most four:

FOOD → MOOD → MON∧D → MONED → MONEY
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String Alignment

Better way to display this process:

• Place the words one above the other in a table

• Put a gap in the first word for every insertion and a gap in

the second word for every deletion

• Columns with two different characters correspond to substi-

tutions

• Then the number of editing steps is just the number of

columns that don’t contain the same character twice
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Example

• String Alignment for “FOOD” and “MONEY”:

F O O D
M O N E Y

• It’s not too hard to see that we can’t do better than four for

the edit distance between “Food” and “Money”
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Example II

• Unfortunately, it can be more difficult to compute the edit

distance exactly. Example:

A L G O R I T H M
A L T R U I S T I C
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Key Observation

• If we remove the last column in an optimal alignment, the

remaining alignment must also be optimal

• Easy to prove by contradiction: Assume there is some better

subalignment of all but the last column. Then we can just

paste the last column onto this better subalignment to get

a better overall alignment.

• Note: The last column can be either: 1) a blank on top

aligned with a character on bottom, 2) a character on top

aligned with a blank on bottom or 3) a character on top

aligned with a character on bottom
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DP Solution

• To develop a DP algorithm for this problem, we first need to

find a recursive definition

• Assume we have a m length string A and an n length string

B

• Let E(i, j) be the edit distance between the first i characters

of A and the first j characters of B

• Then what we want to find is E(n, m)
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Recursive Definition

• Say we want to compute E(i, j) for some i and j

• Further say that the “Recursion Fairy” can tell us the solu-

tion to E(i′, j′), for all i′ ≤ i, j′ ≤ j, except for i′ = i and

j′ = j

• Q: Can we compute E(i, j) efficiently with help from the our

fairy friend?
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Recursive Definition

There are three possible cases:

• Insertion: E(i, j) = 1 + E(i − 1, j)

• Deletion: E(i, j) = 1 + E(i, j − 1)

• Substitution: If ai = bj, E(i, j) = E(i−1, j−1), else E(i, j) =

E(i − 1, j − 1) + 1
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Summary

Let I(A[i] 6= B[j]) = 1 if A[i] and B[j] are different, and 0 if they

are the same. Then:

E(i, j) = min











E(i − 1, j) + 1,
E(i, j − 1) + 1,
E(i − 1, j − 1) + I(A[i] 6= B[j])










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Base Case(s)

It’s not too hard to see that:

• E(0, j) = j for all j, since the j characters of B must be

aligned with blanks

• Similarly, E(i,0) = i for all i
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Recursive Alg

• We now have enough info to directly create a recursive al-

gorithm

• The run time of this recursive algorithm would be given by

the following recurrence:

T (m,0) = T (0, n) = O(1)

T (m, n) = T (m, n− 1)+ T (m− 1, n)+ T (n− 1, m− 1)+ O(1)

• Solution: T (n, n) = Θ(1 +
√

2n), which is terribly, terribly

slow.
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Better Idea

• We can build up a m × n table which contains all values of

E(i, j)

• We start by filling in the base cases for this table: the entries

in the 0-th row and 0-th column

• To fill in any other entry, we need to know the values directly

above, to the left and above and to the left.

• Thus we can fill in the table in the standard way: left to

right and top down to ensure that the entries we need to fill

in each cell are always available
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Example Table

• Bold numbers indicate places where characters in the strings

are equal

• Arrows represent predecessors that define each entry: hori-

zontal arrow is deletion, vertical is insertion and diagonal is

substitution.

• Bold diagonal arrows are “free” substitutions of a letter for

itself

• Any path of arrows from the top left to the bottom right cor-

ner gives an optimal alignment (there are three paths in this

example table, so there are three optimal edit sequences).
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A L G O R I T H M

0 →1→2→3→4→5→6→7→8→ 9
↓ ↘↘↘↘↘↘↘↘↘

A 1 0→1→2→3→4→5→6→7→ 8
↓ ↓↘↘↘↘↘↘↘↘↘

L 2 1 0→1→2→3→4→5→6→ 7
↓ ↓ ↓↘ ↘ ↘ ↘ ↘↘↘↘↘↘↘↘↘

T 3 2 1 1→2→3→4 4→5→ 6
↓ ↓ ↓ ↓↘ ↘↘↘↘↘↘↘↘↘ ↘ ↘

R 4 3 2 2 2 2→3→4→5→ 6
↓ ↓ ↓↘↓↘ ↓↘↓↘ ↘ ↘ ↘

U 5 4 3 3 3 3 3→4→5→ 6
↓ ↓ ↓↘↓↘ ↓↘↓↘↘↘↘↘↘↘↘↘ ↘ ↘ ↘

I 6 5 4 4 4 4 3→4→5→ 6
↓ ↓ ↓↘↓↘ ↓↘↓ ↓ ↘ ↘

S 7 6 5 5 5 5 4 4 5 6
↓ ↓ ↓↘↓↘ ↓↘↓ ↓↘↘↘↘↘↘↘↘↘ ↘ ↘

T 8 7 6 6 6 6 5 4→5→ 6
↓ ↓ ↓↘↓↘ ↓↘↓ ↓ ↓↘ ↘

I 9 8 7 7 7 7 6 5 5→ 6
↓ ↓ ↓↘↓↘ ↓↘↓ ↓ ↓↘↓↘

C 10 9 8 8 8 8 7 6 6 6

Analysis

• Let n be the length of the first string and m the length of

the second string

• Then there are Θ(nm) entries in the table, and it takes Θ(1)

time to fill each entry

• This implies that the run time of the algorithm is Θ(nm)

• Q: Can you find a faster algorithm?
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