
CS 506 Lecture 1: Convex Hull Spring 2019

Note: These lecture notes are based on lecture notes by Jeff Erickson and the textbook “Com-
putational Geometry” by Berg et al.

1 2-D Convex Hull Problem

Convex Hull Problem:
Given: A set of points P in the plane.
Goal: Find the smallest, convex polygon containing all points in P

Definitions:

• Polygon: A region of the plane bounded by a cycle of line segments, joined end-to-end. The
line segments are called edges and the points where there are joined are called vertices

• Convex: For any line segment connecting any two points in the polygon, all points in the line
segment are also in the polygon.

• Smallest: Removing any point from the convex hull will violate convexity or the fact that it
contains P .

This problem is equivalent to

• Finding the largest convex polygon whose vertices are points in P .

• Finding the set of all convex combinations of points in P (i.e. all points on any line segment
between any pair of points).

• Finding the intersection of all convex regions containing P

Questions:

• Can there be a convex set of points (not necessarily a polygon) that contains P and has
smaller area than the convex hull?

• What is the maximum number of vertices on the convex hull when |P | = n, and all points in
P are in general position (see below)?

1.1 Applications

• Recipes: Each recipe for a crepe is a point in a 4-D space that gives the amount of each
ingredient in the crepe (e.g. egg, milk, water and flour). Fundamentally, a crepe is defined
as the convex-hull of all these points. Similarly, pancakes and flan are defined as separate
convex hulls in the same space.

• Robotics: Find convex-hull of obstacles to simplify motion-planning problems

• Chemical-Engineering: Have several input mixtures of oil containing component A and B at
a certain ration. For example, have mixtures that are (.3, .7), (.5, .5), (.9, .1). Can you achieve
goal ratio (x, y) by mixing the input mixtures? Solution: Is (x, y) in the convex hull of the
input points?

1

CS 506 Lecture 1: Convex Hull Spring 2019

1.2 General Position

Throughout this class we will assume points are in general position: no 3 points are on a line. This
is analogous to assuming now two numbers are the same in sorting.

Technique to remove this assumption is Symbolic Perturbation. Intuitively, the idea is to perturb
the coordinates of every point by a uniformly random amount chosen for a range small enough to
have no impact on the output. Then, with all but negligible probability, the points will be in
general position.

2 3 points

Consider 3 points (a, b), (c, d) and (e, f). Then the three points are in counterclockwise (ccw) order
iff cross-product of the two vectors (c, d)− (a, b) and (e, f)− (a, b) is greater than 0. This holds iff

(f − b)(c− a)− (d− b)(e− a) > 0

One can also think of the slope of the line given by (a, b), (c, d) is less than the slope of the line
given by (a, b), (e, f). In particular, if (a, b) is to the left of (c, d) and (e, f), then ccw order holds
only if

d− b

c− a
<

d− b

e− a
Cross-multiplying, we get that the points are in ccw order iff

(f − b)(c− a) > (d− b)(e− a)

This final equivalence is true even if (a, b) is not the leftmost point.

(a,b)

(c,d)

(e,f)

Figure 1. From the viewpoint of (a, b), (c, d) is ccw of (e, f)

2.1 Jarvis’ Algorithm (Wrapping)

procedure Jarvis(P)
ℓ ← leftmost point in P
p ← ℓ
repeat

q ← closest clockwise point from p, among all points not yet in hull
next(p) ← q ⊲ next(p) is next point in convex hull
p ← q

until p = ℓ
end procedure

The step where we find q takes O(n) time (to find a minimum). Thus the entire algorithm takes
O(hn) time where h is the number of points on the convex hull.

2

CS 506 Lecture 1: Convex Hull Spring 2019

Computational Geometry Lecture 1: Convex Hulls

1.4 Divide and Conquer (Splitting)

The behavior of Jarvis’s marsh is very much like selection sort: repeatedly find the item that goes in the
next slot. In fact, most convex hull algorithms resemble some sorting algorithm.

For example, the following convex hull algorithm resembles quicksort. We start by choosing a pivot
point p. Partitions the input points into two sets L and R, containing the points to the left of p, including
p itself, and the points to the right of p, by comparing x-coordinates. Recursively compute the convex
hulls of L and R. Finally, merge the two convex hulls into the final output.

The merge step requires a little explanation. We start by connecting the two hulls with a line segment
between the rightmost point of the hull of L with the leftmost point of the hull of R. Call these points
p and q, respectively. (Yes, it’s the same p.) Actually, let’s add two copies of the segment pq and call
them bridges. Since p and q can ‘see’ each other, this creates a sort of dumbbell-shaped polygon, which
is convex except possibly at the endpoints off the bridges.

Merging the left and right subhulls.

We now expand this dumbbell into the correct convex hull as follows. As long as there is a clockwise
turn at either endpoint of either bridge, we remove that point from the circular sequence of vertices and
connect its two neighbors. As soon as the turns at both endpoints of both bridges are counterclockwise,
we can stop. At that point, the bridges lie on the upper and lower common tangent lines of the two
subhulls. These are the two lines that touch both subhulls, such that both subhulls lie below the upper
common tangent line and above the lower common tangent line.

Merging the two subhulls takes O(n) time in the worst case. Thus, the running time is given by
the recurrence T(n) = O(n) + T(k) + T(n� k), just like quicksort, where k the number of points in R.
Just like quicksort, if we use a naïve deterministic algorithm to choose the pivot point p, the worst-case
running time of this algorithm is O(n2). If we choose the pivot point randomly, the expected running
time is O(n log n).

There are inputs where this algorithm is clearly wasteful (at least, clearly to us). If we’re really
unlucky, we’ll spend a long time putting together the subhulls, only to throw almost everything away
during the merge step. Thus, this divide-and-conquer algorithm is not output sensitive.

A set of points that shouldn’t be divided and conquered.

4

Figure 2. Merging Hull - From Jeff Erickson’s lecture notes.

2.2 Divide and Conquer

In this algorithm, we partition the points, recursively compute the hull of each partition, and then
patch up the two hulls to get the hull of P .

procedure DivideAndConquer(P)
p ← point chosen uniformly at random in P
L ← all points with x-coordinate less than or equal to that of p
R ← P − L
CL ← convex hull of L (computed recursively)
CR ← convex hull of R (computed recursively)
“Merge” CL and CR to get convex hull of P
Create two bridges between the rightmost point in CL and leftmost point in CR

while Either endpoint of either bridge is in a concave corner do
Remove the vertex at the middle of this corner from the hull
Update that bridge to connect the endpoints of that concave corner

end while
end procedure

For an ordered sequence of points, p, q, r in a potential convex hull, we say that p, q and r form
a concave corner if from p’s viewpoint, r is ccw of q. Then q is the corner vertex that is removed
from the hull.

The figure shows the merging. The red line segments are the bridges. The yellow wedges
represent concave corners found. Note that the middle point of the wedge is the point that is
always removed.

The runtime is a random variable. We can use linearity of expectation to create a recurrence
relation for the expected run time. If T (n) is the expected runtime of the algorithm when there
are n points, then we have:

T (n) =

n!

i=1

1

n
(T (i) + T (n− i) + n)

since we have the two recursive calls and at most n time to merge the hulls. An inductive proof

3

CS 506 Lecture 1: Convex Hull Spring 2019

shows that the solution to this recurrence is O(n log n). There is some trickiness in pushing through
the induction - it helps to break the sum into halves.

2.3 Graham Scan

Computational Geometry Lecture 1: Convex Hulls

1.5 Graham’s Algorithm (Das Dreigroschenalgorithmus)

Our next convex hull algorithm, called Graham’s scan, first explicitly sorts the points in O(n log n) and
then applies a linear-time scanning algorithm to finish building the hull.

We start Graham’s scan by finding the leftmost point `, just as in Jarvis’s march. Then we sort the
points in counterclockwise order around `. We can do this in O(n log n) time with any comparison-based
sorting algorithm (quicksort, mergesort, heapsort, etc.). To compare two points p and q, we check
whether the triple `, p, q is oriented clockwise or counterclockwise. Once the points are sorted, we
connected them in counterclockwise order, starting and ending at `. The result is a simple polygon with
n vertices.

A simple polygon formed in the sorting phase of Graham’s scan.

To change this polygon into the convex hull, we apply the following ‘three-penny algorithm’. We
have three pennies, which will sit on three consecutive vertices p, q, r of the polygon; initially, these are
` and the two vertices after `. We now apply the following two rules over and over until a penny is
moved forward onto `:

• If p, q, r are in counterclockwise order, move the back penny forward to the successor of r.

• If p, q, r are in clockwise order, remove q from the polygon, add the edge pr, and move the middle
penny backward to the predecessor of p.

The ‘three-penny’ scanning phase of Graham’s scan.

Whenever a penny moves forward, it moves onto a vertex that hasn’t seen a penny before (except
the last time), so the first rule is applied n� 2 times. Whenever a penny moves backwards, a vertex is
removed from the polygon, so the second rule is applied exactly n� h times, where h is as usual the
number of convex hull vertices. Since each counterclockwise test takes constant time, the scanning
phase takes O(n) time altogether.

5

Figure 3. Sorting counter-clockwise wrt to leftmost point ℓ

procedure GrahamScan(P)
ℓ ← leftmost point in P
Sort all points in P in CCW order with respect to ℓ
Let p, q and r be consecutive vertices in the sorted P . (Imagine there are 3 pennies on these

vertices.)
repeat

if p, q and r are in ccw order then
Output vertex back penny is on as part of convex hull
Move back penny forward to the successor of r (in P)

else
Remove q from P , move middle penny back to predecessor(p)

end if
until r equals ℓ

end procedure

2.3.1 Runtime

Whenever a penny moves forward, it is to a vertex never seen before, so the first part of the if
statement happens O(n) times.

Whenever a penny moves backward, a vertex is removed from P , so this step happens O(n)
times.

Thus, total runtime of algorithm is dominated by the sorting which takes O(n log n) time.

2.3.2 Correctness

Prove that the output contains all of the vertices of the convex hull.
For a vertex to get thrown out, it must be CCW of a vertex added to the hull (i.e. it is in a

concave corner)
Prove that the output contains only vertices in the convex hull.
Show that we can compute the bottom hull. Top hull correctness proof is symmetric. (Bottom

hull is set of points in hull starting from ℓ until next point in hull induces a line with non-positive
slope.)

Proof for bottom hull is by induction. To show: When we’ve added points p1, . . . pi to the
convex hull, that these points form the bottom convex hull of the sorted points in P up to point pi

4

CS 506 Lecture 1: Convex Hull Spring 2019

Computational Geometry Lecture 1: Convex Hulls

1.5 Graham’s Algorithm (Das Dreigroschenalgorithmus)

Our next convex hull algorithm, called Graham’s scan, first explicitly sorts the points in O(n log n) and
then applies a linear-time scanning algorithm to finish building the hull.

We start Graham’s scan by finding the leftmost point `, just as in Jarvis’s march. Then we sort the
points in counterclockwise order around `. We can do this in O(n log n) time with any comparison-based
sorting algorithm (quicksort, mergesort, heapsort, etc.). To compare two points p and q, we check
whether the triple `, p, q is oriented clockwise or counterclockwise. Once the points are sorted, we
connected them in counterclockwise order, starting and ending at `. The result is a simple polygon with
n vertices.

A simple polygon formed in the sorting phase of Graham’s scan.

To change this polygon into the convex hull, we apply the following ‘three-penny algorithm’. We
have three pennies, which will sit on three consecutive vertices p, q, r of the polygon; initially, these are
` and the two vertices after `. We now apply the following two rules over and over until a penny is
moved forward onto `:

• If p, q, r are in counterclockwise order, move the back penny forward to the successor of r.

• If p, q, r are in clockwise order, remove q from the polygon, add the edge pr, and move the middle
penny backward to the predecessor of p.

The ‘three-penny’ scanning phase of Graham’s scan.

Whenever a penny moves forward, it moves onto a vertex that hasn’t seen a penny before (except
the last time), so the first rule is applied n� 2 times. Whenever a penny moves backwards, a vertex is
removed from the polygon, so the second rule is applied exactly n� h times, where h is as usual the
number of convex hull vertices. Since each counterclockwise test takes constant time, the scanning
phase takes O(n) time altogether.

5

Figure 4. Steps of Graham Scan

Inductive step: Assume the first i − 1 vertice processed p1 = ℓ, p2, pi−1 for the bottom hull of
all vertices through pi−1.

Now consider when we add pi to the convex hull. Note: the chain of vertices p1, . . . pi is below

2.4 Chan’s algorithm

Chan’s algorithm is output sensitive in that the runtime is O(n log h).
To understand it better, assume first that we know h in advance. Then we do the following

procedure Chan(P)
Partition P arbitrarily into n/h sets of size h
Compute convex hulls of each partition (using say Graham scan)
Compute convex hull of all these hulls via “wrapping” (as in Jarvis’ march)

end procedure

Total runtime is O(n/h(h log h)) = O(n log h) for the recursive calls. When we ”wrap”, we
repeatedly need to find the tangent line between a vertex p and any sub-hull. This can be done in
O(log h) time via a type of binary search. Since there are n/h subhulls, takes O((n/h) log h) time
to find the successor of p. Since we find the successor h− 1 times, wrapping takes O(n log h) time.

So everything works great if we know h in advance. What if we don’t?Computational Geometry Lecture 1: Convex Hulls

Shattering the points and computing subhulls in O(n log h) time.

Once we have the n/h subhulls, we follow the general outline of Jarvis’s march, ‘wrapping a string
around’ the n/h subhulls. Starting with p = `, where ` is the leftmost input point, we successively find
the convex hull vertex the follows p and counterclockwise order until we return back to ` again.

The vertex that follows p is the point that appears to be furthest to the right to someone standing
at p. This means that the successor of p must lie on a right tangent line between p and one of the
subhulls—a line from p through a vertex of the subhull, such that the subhull lies completely on the
right side of the line from p’s point of view. We can find the right tangent line between p and any subhull
in O(log h) time using a variant of binary search. (Details are left as an exercise.) Since there are n/h
subhulls, finding the successor of p takes O((n/h) log h) time altogether.

Since there are h convex hull edges, and we find each edge in O((n/h) log h) time, the overall running
time of the algorithm is O(n log h).

Wrapping the subhulls in O(n log h) time.

Unfortunately, this algorithm only takes O(n log h) time if a little birdie has told us the value of h in
advance. So how do we implement the ‘little birdie’? Chan’s trick is to guess the correct value of h; let’s
denote the guess by h⇤. Then we shatter the points into n/h⇤ subsets of size h⇤, compute their subhulls,
and then find the first h⇤ edges of the global hull. If h< h⇤, this algorithm computes the complete convex
hull in O(n log h⇤) time. Otherwise, the hull doesn’t wrap all the way back around to `, so we know our
guess h⇤ is too small.

Chan’s algorithm starts with the optimistic guess h⇤ = 3. If we finish an iteration of the algorithm
and find that h⇤ is too small, we square h⇤ and try again. Thus, in the ith iteration, we have h⇤ = 32i

. In
the final iteration, h⇤ < h2, so the last iteration takes O(n log h⇤) = O(n log h2) = O(n log h) time. The
total running time of Chan’s algorithm is given by the sum

kX

i=1

O(n log 32i
) = O(n) ·

kX

i=1

2i

for some integer k. Since any geometric series adds up to a constant times its largest term, the total
running time is a constant times the time taken by the last iteration, which is O(n log h). So Chan’s
algorithm runs in O(n log h) time overall, even without the little birdie.

1.9 Prune and Search (Filtering)

We can also achieve O(n log h) running time using a variant of the earlier divide-and-conquer algorithm,
called QuickHull. This algorithm avoids the O(n2) worst-case running time by choosing an approximately

9

Figure 5. Sorting counter-clockwise wrt to leftmost point ℓ

5

CS 506 Lecture 1: Convex Hull Spring 2019

Computational Geometry Lecture 1: Convex Hulls

Shattering the points and computing subhulls in O(n log h) time.

Once we have the n/h subhulls, we follow the general outline of Jarvis’s march, ‘wrapping a string
around’ the n/h subhulls. Starting with p = `, where ` is the leftmost input point, we successively find
the convex hull vertex the follows p and counterclockwise order until we return back to ` again.

The vertex that follows p is the point that appears to be furthest to the right to someone standing
at p. This means that the successor of p must lie on a right tangent line between p and one of the
subhulls—a line from p through a vertex of the subhull, such that the subhull lies completely on the
right side of the line from p’s point of view. We can find the right tangent line between p and any subhull
in O(log h) time using a variant of binary search. (Details are left as an exercise.) Since there are n/h
subhulls, finding the successor of p takes O((n/h) log h) time altogether.

Since there are h convex hull edges, and we find each edge in O((n/h) log h) time, the overall running
time of the algorithm is O(n log h).

Wrapping the subhulls in O(n log h) time.

Unfortunately, this algorithm only takes O(n log h) time if a little birdie has told us the value of h in
advance. So how do we implement the ‘little birdie’? Chan’s trick is to guess the correct value of h; let’s
denote the guess by h⇤. Then we shatter the points into n/h⇤ subsets of size h⇤, compute their subhulls,
and then find the first h⇤ edges of the global hull. If h< h⇤, this algorithm computes the complete convex
hull in O(n log h⇤) time. Otherwise, the hull doesn’t wrap all the way back around to `, so we know our
guess h⇤ is too small.

Chan’s algorithm starts with the optimistic guess h⇤ = 3. If we finish an iteration of the algorithm
and find that h⇤ is too small, we square h⇤ and try again. Thus, in the ith iteration, we have h⇤ = 32i

. In
the final iteration, h⇤ < h2, so the last iteration takes O(n log h⇤) = O(n log h2) = O(n log h) time. The
total running time of Chan’s algorithm is given by the sum

kX

i=1

O(n log 32i
) = O(n) ·

kX

i=1

2i

for some integer k. Since any geometric series adds up to a constant times its largest term, the total
running time is a constant times the time taken by the last iteration, which is O(n log h). So Chan’s
algorithm runs in O(n log h) time overall, even without the little birdie.

1.9 Prune and Search (Filtering)

We can also achieve O(n log h) running time using a variant of the earlier divide-and-conquer algorithm,
called QuickHull. This algorithm avoids the O(n2) worst-case running time by choosing an approximately

9

Figure 6. Steps of Graham Scan

2.4.1 Guessing h

In Chan’s algorithm, we actually guess increasingly large values of h. Let h′ = 3 be our first guess.
If our guess is too small, we square h′ and try again. In the final iteration, h′ ≤ h2, so the total
cost of last iteration is O(n log h2) = O(n log h).

Say that there are k total iterations, then the cost of all iterations is

k!

i=1

O(n log 32
i
) = O

"
n

k!

i=1

2i

#

.
Since a geometric summation is always a constant times its largest term, total runtime is big-O

of the time of the last iteration which is O(n log h).

3 Open Problems

Convex-hull in the CONGEST model. Each point is a wireless node. Can compute in parallel, but
in each round, can broadcase O(polylog(n)) bits. What is the minimum number of rounds needed
to compute convex-hull?

6

