CS 506, HW1

Prof. Jared Saia, University of New Mexico

Due: Feb. 18th

You are encouraged to work on the homework in groups of 2 to 4 people.
You may turn in one writeup per group, but please certify that all members
worked on each problem. Note that some of these problems are from the
book “Computational Geometry (third edition)” by Berg, et al. Mount’s
notes and homework problems are available in the link off the course web
page: http://www.cs.umd.edu/class/fall2016/cmsc754 /Handouts/cmsc754-
2016-08-handouts.pdf

1. (Exercise 8.1 from Berg) Prove that the duality transform discussed
in class is indeed incidence and order reversing.

2. (Exercise 8.2 from Berg) The dual of a line segment is a left-right
double wedge, as discussed in class. Answer the following

(a) What is the dual of the collection of points inside a given triangle
with vertices p,q and r

(b) What type of object in the primal plane would dualize to a top-
bottom double wedge?

Solution: (a) Completely Correct: It is the union of the three left-right
double wedges that are the duals of the line segments pq, qr and rp.
To see this, note first that the boundary of the triangle dualizes to
these three wedges. What about points inside the boundary? Note
that order preservation says that if all points, x, in the triangle are
above say line pr and below lines pq and qr, then in the dual plane, x*
will be below point pr* and above pq* and qr*. So x will be inside one
of the wedges. (b) Completely correct. Consider a horizontal line that
is missing all points in the line segment with x values (-x’,4+x’). This
line dualizes to a top-bottom wedge. To see this, note that the right
part of this object dualizes to lines with slopes x’ to up to infinity,

and the left part of the object dualizes to lines with slopes -x’ down
to -infinity.

. In the online convex hull problem, we are given a set of n points one
at a time. After receiving each point, we compute the convex hull of
all points seen so far. Consider this problem in the 2D plane. Give an
efficient online algorithm to update the convex hull when a new point
is given. Analyze your algorithm.

Solution: Implicit binary search to find the tangent lines. Need to
also say how you can ”snip out” all the points in the prior convex hull
between the tangent vertices in logarithmic time. For example, if you
store the hull points in a balanced tree like a skip list, you can delete
any number of points between some keys x and y in constant time via
pointer operations.

L4 D ERLEE SR ° °
p in Pareto(P)
. Lo .
. 0 e o not in Pareto(P)
[o H
[] o H
o o
o
[] [] o L]
e T e °
[] o H
[] [] [] o o ‘e
[] [] o o
. ‘e
. °) o M eereneeeng
[] [] [] o o o
[] [] o o

Figure 1. Example Pareto optimal figure (from David Mount hw).

. Problem 2, HW 1 from David Mount’s class (Pareto Optimal/Convex
Hull problem) quoted below.

Consider a set of points P = {pi,...p,} in the plane where p; =
(zi,yi). A Pareto set for P, denoted Pareto(P) is a subset of points
P’ such that for each p; € P, there is no p; € P such that z; > z; and
y; > vy;. That is, each point of Pareto(P) has the property that there
is no point of P that is both to the right and above it. Pareto sets are
important whenever you want to optimize two criteria (e.g. accuracy
and precision of a machine learning algorithm, cheapness and flight
“shortness” for airline tickets, etc.), since they represent the optimal
“envelope” of possible solutions.

This problem explores the many similarities between Pareto sets and
convex hulls. Whenever a problem asks for an algorithm, briefly justify
correctness of your algorithm, explain any non-standard data struc-
tures, and derive the runtime.

(a) A point p lies on the convex hull of a set P if and only if there is
a line passing through p such that all the points of P lie on one
side of this line. Provide an analogous assertion for the points of
Pareto(P) in terms of a different shape.

(b) Devise an analogue of Graham’s convex-hull algorithm for com-
puting Pareto(P) in O(nlogn) time. Briefly justify your algo-
rithm’s correctness and derive its runtime. (You don’t need to
explain the algorithm “from scratch”; you can explain what mod-
ifications need to be made to Graham’s algorithm.

(c) Devise an analogue of Jarvis march algorithm for computing
Paret(P) in O(hn) time where h is the cardinality of Pareto(P).
(as in the last part, you can just explain the differences with
Jarvis’s algorithm.

(d) Devise an algorithm for computing Pareto(P) in O(nlogh) time.
Hint: Chan!

Solution: (a) Correct: For point (a, b) to be in the Pareto(P), all points
in P must be either be below the line y = b or to the left of the line x =
a. (b) Sort points in descending order by x-coordinate. Add rightmost
point to Pareto(P). Process points in decreasing order of x-coordinate
and if we get a point with larger y-coordinate add it to Pareto(P). So
we just check y-coordinate values of new points against last y-coord in
Pareto(P), instead of checking for CCW turns. Runtime is O(nlogn).
(c) We want to start with top-most point and look for next highest
point with greater x-coordinate. So each time we add something to
the Pareto(P), we do n possible checks. This gives O(nh) runtime.(d)
Initially pretend we know h. Break points into sets of size h and find
the mini-Paretos of each partition in time O(h log h) using Grahams.
Next, merge by starting with the rightmost point of all sets. Say p
is the most rightmost point. Put it in the Pareto. Now look at the
rightmost points of the remaining sets and if they are below p, pop
them off. Now find the next rightmost point and continue. Takes
O(nlogh) time to merge. Finally, we need to ”guess” h iteratively as
in class in the case where we don’t know it initially.

. Let R be a set of n red points in the plane, and let B be a set of n
blue points in the plane. A separator or R and B is a line ¢ that
has all points of R to one side and all points of B to the other. Give
an algorithm that can decide in O(n?) time whether R and B have a
separator.

6. (Exercise 8.10 from Berg) Let L be a set of n non-vertical lines in the
plane. Suppose that the arrangement A(L) only has vertices with level
1. What can you say about this arrangement? Next suppose that lines
of L can be vertical. What can you say now about the arrangement?

Solution: (a) Correct: If no lines are vertical, and all vertices are at
level 1, then there can only be vertex in the arrangement. Easy to show
this via a proof by contradiction. (b) Correct: If the lines of L can be
vertical, then we can have n-1 vertical lines, and one non-vertical line
which will create n-1 level 1 vertices.

o e EP
. €Q

Figure 2. Computing an e-sketch (from David Mount hw)

7. Problem 4, HW 3 from David Mount’s class (e sketch of convex hull),
quoted below.
You are given a set P of n points lying in the unit square in the plane.
Given any subset Q C P, clearly we have conv(Q) C conv(P). For
€ > 0, we say that @) is an e-sketch of P if every point of P lies within
distance at most € of conv(Q) (See Figure 2 (a)).

(a) Consider the following simple greedy algorithm for computing an
e-sketch of a planar point set P. First let (po,...,pr—_1) denote
the vertices of conv(P) listed in counterclockwise order. Put pg in
Q@ and set i + 0. Find the largest index j, i < j < k such that all
the points {p;11,...pj—1 lie within distance € of the line segment
pi,pj (See Fig 2(b)). (Indices are taken modulo k so py = po.) If
J = k then stop. Otherwise, add p; to @, set ¢ <— j and repeat.
Show that this procedure correctly produces an e-sketch of P.

(b) Fix some € > 0. Let m(P) be the minimum number of points on
any e-sketch of P. Assume the points of P are in convex position,
i.e. they all lie on the border of conv(P). Show that the greedy
procedure above produces a sketch of size at most m(P) + 1.
Hint: First show that the points in any minimum sketch can be
assumed to be taken from the vertices of the convex hull of P.
To do this, show that you can take any arbitrary e-sketch and
create an e-sketch where all vertices are in P, by only increasing
the number of vertices by a constant factor. Second, consider
the points of the minimum sketch in cyclic order about P’s con-
vex hull and ask how many points in the original hull can occur
between any two points of the minimum sketch.

(c) Prove that m(P) = O(1/e). Le., that it it is completely indepen-
dent of the number of vertices of the convex hull. What impli-
cation does this have on the amount of space needed to store an
e-approximation of all crepe recipes?

Solution: (a) Correct: Showing that the greedy algorithm produces a
e sketch is just a direct proof; (b) Correct. We can ensure all vertices
are in P by increasing the number of vertices in the sketch by at most
a constant factor. To see this, consider two adjacent vertices p; and
p; in the initial sketch and rotate the plane so that the edge between
them is horizontal. Consider all points, S (in P) that are at most
€ above this line segment, and sort the points in S by x coordinate.
Note that the y coordinates of all these points differ by at most 2¢. So
we can cover all points in S by including the first vertex in S, and 4
additional vertices to ensure that there is never a vertical distance of
more than € between adjacent vertices. Continuing in this way, we can
make all vertices points in P, while blowing up the number of vertices
by at most a factor of 4. (b) Correct. To show that greedy takes m(P)
+ 1 points, consider some optimal e-sketch OPT. Note that there’s at
least 1 vertex in OPT between any two vertices selected by greedy, say
v and v’. If OPT does not contain at least one vertex in the sequence
between v and v/, then there is some point that is not within € of the
line segment chosen by OPT that is closest to these points. This holds
by the definition of the greedy algorithm. (c) Correct: the perimeter of
any convex shape inside the unit square is no more than the perimeter
of the unit square. Hence, the perimeter of the convex hull is O(1).
Thus, in the worst case, O(1/€) points suffice to ensure that every
point on the perimeter is within € of the sketch.

8. Challenge: (This is the type of problem that could turn into a project
or potentially a paper) Can you adapt the e-sketch convex hull problem
to come up with a similar type of sketch of the upper envelope in an
arrangement? What can you say formally about the number of lines
in your sketch of the upper envelope and how well the sketch approx-
imates the true upper envelope? (Super Challenge: Any connections
to sketching a Voronoi diagram?)

Solution: Correct. A precise approximation guarantee. OK to turn
in this problem in the next homework. Connection between upper
envelope problem and convex hull pointed out.

