
CS 506 Lecture: JL Applications, Epsilon Nets

Note: These lecture notes are closely based on lecture notes by Sanjeev Arora [1] and Matt
Weinberg [2].

1 Previously Proven

1.1 Johnson-Lindenstrauss Projection

Let G be a m by d matrix where each entry is a Normal random variable, i.e. Gi,j ∼ N (0, 1). Let
Π = 1√

m
G and let

f(x) = Πx.

So each entry in f(v) equals v ·g for some vector g filled with scaled Normal random variables (note
that Gaussian and Normal are synonmous). Other (simpler) approaches also work (See Section 2
below).

1.2 Main Theorems

Theorem 1. (The (ε, δ)-JL property) If m = 9 log(1/δ)/ε2 then, with probability 1 − δ, for any
vector x,

(1− ε)|x|2 ≤ |Πx|2 ≤ (1 + ε)|x|2

Theorem 2. Assume we are given n points v1, . . . vn ∈ Rd and a fixed ε > 0. Let m = O(log n/ε2)
and set f = Π, where Π is a m by d matrix of independent N (0, 1) random variables. Then, with
probability 1− 1/n, for any i and j, 1 ≤ i < j ≤ n:

(1− ε)|vi − vj | ≤ |Πvi −Πvj | ≤ (1 + ε)|vi − vj |

2 A Simpler Johnson-Lidenstrauss Projection

Here is a simpler Johnson-Lindenstrauss Algorithm for projection that also works.

1. x1, . . . xm ← vectors in Rm chosen as follows. Each coordinate is chosen independently and

randomly from
!"

1+ε
m ,−

"
1+ε
m

#

2. ui[j] ← xi · ui for all i : 1 ≤ i ≤ n and j : 1 ≤ j ≤ m

In other words, ui = (zi · x1, . . . zi · xm) for i = 1, . . .m. Note that we can think of this as
a linear transformation u = Az where A is a matrix with random and independent entries in!"

1+ε
m ,−

"
1+ε
m

#
.

2.1 Analysis

We now do a “sketch” of the analysis. The following lemma shows that things work out well in
expectation.

Lemma 1. For any 1 ≤ i < j ≤ n, E(|ui − uj |2) = (1 + ε)|zi − zj |2

1

CS 506 Lecture: JL Applications, Epsilon Nets

Proof: According to the projection, we have the following for any 1 ≤ i < j ≤ n:

|ui − uj |2 =
m$

k=1

%
n$

ℓ=1

(zi[ℓ]− zj [ℓ])xk[ℓ]

&2

Fix i and j. Let z = zi − zj and let u = ui − uj . Then for any 1 ≤ k ≤ m, we have

E(|u · xk|2) = E

'

(
%

n$

ℓ=1

(z[ℓ]xk[ℓ]

&2
)

*

=
$

ℓ

$

ℓ′

E
+
z[ℓ]xk[ℓ]z[ℓ

′]xk[ℓ
′]
,

=

n$

ℓ=1

E
+
(z[ℓ]xk[ℓ])

2
,

=
1 + ε

m
|z|2

Hence, by linearity of expectation E(|u|2)) = (1 + ε)|z|2. □

The rest of the analysis follows similar to that in Theorem 2. First, one establishes a (harder)
tail-bound around this expectation and then does a union bound over all pairs of points. In this
way, we can get the same result as Theorem 2.

3 Applications of JL Projection

• Approximate all-pairs distances in O(n log n+ nd) vs O(n2d) time

• Approximate distance-based clustering

• Approximate support vector machine (SVM) classification

• Approximate Linear Regression

Note: For some of these Machine Learning type applications, we need it to be the case that
distances are approximately preserved across all (infinite) vectors in the vector space. Thus, a
simple union bound won’t work and instead we need to make use of a technique called ε-nets. We
discuss this technique below.

4 Linear Regression and !-Nets

The following is the classic lear-squares regression problem.

Given: A set of n data vectors a1, . . . an ∈ Rd, and n response values y1, . . . , yn ∈ R. Let A be a
n× d matrix with rows a1, . . . , an; let y be a length n vector with entries y1, . . . , yn.

2

CS 506 Lecture: JL Applications, Epsilon Nets

Goal: Find x ∈ Rd to minimize

n$

i=1

(ai · x− yi)
2 = |Ax− y|2

Usually, this problem requires O(nd2) time to solve (for example, by using singular value de-
composition). We now show how to speed it up by reducing n using Johnson-Lidenstrauss.1

Let Π be chosen from the family of matrices from Theorem 2. To obtain an approximate
solution, we solve the “sketched” problem where we find x ∈ Rd to minimize:

|ΠAx−Πy|2.

This can be solved in O(md2) time (once ΠA and Πy are computed - we haven’t discussed this
but there are JL transforms which are also fast, since they are sparse). We want to prove that
a solution to this smaller problem is a good approximation to the big problem. Note that the
following lemma is a direct consequence of Theorem 1, applied to the vector Ax− y:

Lemma 2. Let m = O(log(1/δ)/ε2). Then, for any particular vector x, with probability 1− δ,

(1− ε)|Ax− y|2 ≤ |ΠAx−Πy|2 ≤ (1 + ε)|Ax− y|2

Now if we could show this was true for all x, we’d be done. In particular, let x∗ be the optimal
solution for the original problem, and let x̃∗ be the solution for the sketched problem. Then we’ve
have, with probability 1− δ.

|Ax̃∗ − y|2 ≤ 1

1− ε
|ΠAx̃∗ −Πy|2 ≤ 1

1− ε
|ΠAx∗ −Πy|2 ≤ 1 + ε

1− ε
|Ax∗ − y|2.

In the above the first and last inequalities hold via Lemma 2, and the middle inequality holds
by noting that x̃∗ minimizes |ΠAx−Πy| over all vectors x.

If ε ≤ .25, then 1+ε
1−ε ≤ 1+3ε, so we can get an approximation to the original regression problem.

Q: Why do we need a bound for all x above??? The main problem is that x̃∗ depends on the
projection π, and so it’s not fixed ahead of time. How do we extend Lemma 2 to all x? We can’t
use union bounds since there are an infinite number of possible vectors x.

5 Beyond Union Bounds

Recall that we have A ∈ Rn×d and want to approximately find x to minimize |Ax− y|2, by instead
solving the sketched problem |ΠAx−Πy|2. We want to argue that for all x ∈ Rd,

(1− ε)|Ax− y|2 ≤ |ΠAx−Πy|2 ≤ (1 + ε)|Ax− y|2 (1)

But proving this requires establishing a JL-bound for an infinity of possible vectors, which clearly
can’t be shown via union bounds. Instead, we use a different approach.

5.1 Subspace Embeddings

We will prove a more general statement that implies equation 1, and is useful in other applications.

1Note that we are reducing n (number of vectors) and not d (dimension). Since we only care about the matrix A,
you could think of n as the dimension and d as the number of vectors.

3

CS 506 Lecture: JL Applications, Epsilon Nets

U v

Rn

Figure 1. JL approximately preserves distances over any subspace U of dimension d contained in Rn

Theorem 3. Let U ⊂ Rn be a d-dimensional linear subspace in Rn. If Π ∈ Rm×n is chosen from
any distribution D satisfying Theorem 1, then with probability 1− δ,

(1− ε)|v| ≤ |Πv| ≤ (1 + ε)|v| (2)

for all v ∈ U , as long as m = O
-
d log(1/ε)+log(1/δ)

ε2

.

(Note that it’s possible to prove a slightly tighter bound of m = O(d+log(1/δ)
ε2

) that we won’t
discuss here.)

How does this theorem imply equation 1? We can apply it to the d + 1 dimensional subspace
spanned by the d columns of A and the vector y. Every vector formed by inputting some vector
x into the linear equation Ax − y lies in this d + 1 dimensional subspace. So for the regression

problem, we require dimension m = O
-
(d+1) log(1/ε)

ε2

.
. In particular, we can approximately solve

linear regression over n >> d examples for the same amount of work as O(d) examples, for fixed ε.

5.2 An Example

Let n = 7 and U could be the 2 dimensional subspace spanned by (1,−1, 1, 1, 1, 1, 1) and (1, 1,−1, 1, 1, 1, 1).
JL will basically find a low-dimensional sub-space that is not much higher than the dimensionality
of U .

5.3 Reduction to a Sphere

We first note that Theorem 3 holds so long as equation 2 holds for all points on the unit sphere in
U . This is a consequence of linearity of the Euclidean norm. In particular, denote the sphere SU as

SU = {v | v ∈ U and |v| = 1}.

Now any point v ∈ U can be written as cx for some scalar c and some point x ∈ SU . If
(1 − ε)|x| ≤ |Πx| ≤ (1 + ε)|x|, then c(1 − ε)|x| ≤ c|Πx| ≤ c(1 + ε)|x| and so (1 − ε)|cx| ≤ |Πcx| ≤
(1 + ε)|cx|.

Note that the last inequality holds since |cx| =
"/

i(cx)
2
i = c

"/
i x

2
i = c|x|.

4

CS 506 Lecture: JL Applications, Epsilon Nets

Figure 2. An !-net N! for a sphere in a 2-dimensional subspace of U

5.4 Constructing a Net

We prove Theorem 3 by showing that there is a large but finite set of points Nε ⊂ SU such that
if equation 2 holds for all v ∈ Nε, then it holds for all v ∈ SU . The set Nε is called an ε-net. In
particular, we will show the following.

Lemma 3. For any positive ε < 1, there exists a set Nε ⊂ SU with |Nε| =
+
4
ε

,d
such that ∀v ∈ SU ,

min
x∈N!

|v − x| ≤ ε.

Proof: We use the following greedy procedure to construct Nε (note that this construction is just
for proof of existence, our algorithms do not need to implement this). Initially Nε ← {}. Then:

• While there is a point v ∈ SU with distance greater than ε from any point in Nε, add v to Nε.

After running this procedure, we have |Nε| points such that minx∈N! |v − x| ≤ ε for all v ∈ SU .
So we just need to bound |Nε|.

To do so, we first lower bound the volume taken up by balls around points inNε = {x1, x2, . . . , x|N!|}.
In particular, note that for all i ∕= j, |xi − xj | ≥ ε. If not, then either xi or xj would not have been
added to Nε by our greedy algorithm. So if we place balls of radius ε/2 around each xi:

B(x1, ε/2) . . . B(x|N!|, ε/2)

then for all i ∕= j, B(xi, ε/2) does not intersect B(xj , ε/2).
So how do we now set up an inequality to bound |Nε|??? The volume of a d dimensional ball

of radius r is crd for some fixed constant c. Thus, the amount of space taken up by all the balls
surrounding points in Nε is c|Nε|(ε/2)d.

Next note that the amount of space that these balls can exist in is at most the volume of a d
dimensional sphere with radius 1 + ε/2. This volume is c(1 + ε/2)d.

Thus we have that
|Nε|c(ε/2)d ≤ c(1 + ε/2)d

Solving for |Nε|, we have that

|Nε| ≤
c(1 + ε/2)d

c(ε/2)d

≤ (1 + ε/2)d

(ε/2)d

≤
0
4

ε

1d

□

5

CS 506 Lecture: JL Applications, Epsilon Nets

5.5 Proving Theorem 3

We can now prove Theorem 3 by extending to all vectors in the subspace.

Proof: Choose m = O
-
log(|N!|/δ)

ε2

.
= O

-
d log(1/ε)+log(1/δ

ε2

.
so that Equation 2 holds for all x ∈ Nε

(via Theorem 2 and a union bound).
Now consider any v ∈ SU . We claim that for some x0, x1, x2, . . . ∈ Nε that we can write v as:

v = x0 + c1x1 + c2x2 + . . .

for constants c1, c2, . . . where |ci| ≤ εi. To see this, note that there is some point x0 within distance
ε of v. Next we need to represent v − x0, which has norm at most ε. So instead, we can represent
the point v−x0

|v−x0| , which has norm 1 and multiply the resulting coefficients by ε. Again there is some
point x1 within distance ε of this point. Continuing this process ad infinitum gives the claim.

Now, we can consider |Πv| and make use of the triangle inequality in order to complete the
proof.

|Πv| = |Πx0 +Πc1x1 +Πc2x2 + . . . |
≤ |Πx0|+ |Πc1x1|+ |Πc2x2|+ . . .

≤ (1 + ε)|x0|+ (1 + ε)c1|x1|+ (1 + ε)c2|x2|+ . . .

≤ (1 + ε)(|x0|+ c1|x1|+ c2|x2|+ . . .)

≤ (1 + ε)(1 + ε+ ε2 + . . .)

= 1 +O(ε)

[Jared: EXERCISE: Show that the above is 1+O(ε). Some hints are below.] In the above, the
third step follows by the triangle inequality. The fourth step follows by the fact that each xi ∈ Nε,
and so by a Union bound their norms are all approximately preserved. The last line follows since
ε+ ε2+ ε3+ . . . is a geometric summation, which has value that is a constant times its largest term.

The other direction of the proof is symmetric. It is included below for completeness.

|Πv| = |Π(x0 + c1x1 + c2x2 + . . .)|
≥ |Πx0|− ε|Πx1|− ε2|Πx2|− . . .

≥ (1− ε)− ε(1 + ε)− ε2(1 + ε) + . . .

= 1−O(ε)

□

5.6 Other Applications of JL

Note Winnow and Boosting are ML algorithms we’ll discuss soon.

Speed up Winnow by projecting “training data”??? Yes

Speed up Boosting by projecting “training data”??? Yes

Speed up Winnow by projecting attributes??? Not necessarily

Approximate solutions to System of Linear equations? Sometimes

6

CS 506 Lecture: JL Applications, Epsilon Nets

Finding an ε-approximate convex hull?? Sometimes

References

[1] Sanjeev Arora. Advanced Algorithm Design Class, Princeton University, 2013. https://www.
cs.princeton.edu/courses/archive/fall15/cos521/.

[2] Matt Weinberg. Dimensionality Reduction and the Johnson-Lindenstrauss Lemma, 2019. https:
//www.cs.princeton.edu/∼smattw/Teaching/Fa19Lectures/lec9/lec9.pdf.

7

https://www.cs.princeton.edu/courses/archive/fall15/cos521/
https://www.cs.princeton.edu/~smattw/Teaching/Fa19Lectures/lec9/lec9.pdf

