
CS 506 Lecture: Johnson Lindestrauss Projections

Note: These lecture notes are closely based on lecture notes by Sanjeev Arora [1] and Matt
Weinberg [5].

1 Curse and Blessing of Dimensionality

High dimensional vectors are common in data mining and machine learning (e.g. items purchased
by a Amazon customer, gene expression data). The phrase “curse of dimensionality” refers to the
fact that algorithms are frequently harder to design in high-dimensional space - we’ve seen this with
the convex hull algorithm. But, there is sometimes a flip side called “blessing of dimensionality”,
wherein high-dimensional spaces can sometimes make life easier to analyze. For example, we can
pack vectors more tightly in high-dimensional space, it is easier to route around obstacles there,
and many random samples are more likely to be tightly clustered around a mean (e.g. via Chernoff
bounds).

The fact is that high dimensional spaces behave differently than our intuition suggests (living
as we are in 3-dimensional space). Following are some examples, but first some notation.

For a vector x ∈ Rd, its ℓ2-norm is |x|2 = (
!

i x
2
i )

1/2 and ℓ1-norm is |x|1 = (
!

i |xi|). For any
two vectors x, y, their Euclidean distance is |x− y|2 and their Manhattan distance is |x− y|1.

Some generalizations of geometric objects to higher dimensions:

• The unit d-cube in Rd: {(x1, . . . xd : 0 ≤ xi ≤ 1}. In R4, if you are looking at one of the faces,
say where x1 = 1, then you are looking at a cube in R3. The volume of the n-cube is 1.

• The unit d-ball in Rd: Bd = {(x1, . . . xd :
!

i x
2
i ≤ 1}. In R4, if you slice through it with a

hyperplane, say x1 = 1/2, then this slice is a ball in R3 with radius of
"

1− 1/22 =
√
3/2.

Every parallel slice also gives a ball. The volume of Bd is πd/2

(d/2)! (assuming d even). This is
1

dΘ(d)

1.1 High Dimensionality Weirdness

1.1.1 Unit Ball

What is the ratio of the unit ball to its circumscribing cube (cube of side length 2)? In R2, it is π/4
or about .78. In R3 it is π/6 or about .52. In d dimensions, it is 1

dΘ(d) /2
d = d−cd for some constant

c > 0.

1.2 Near Orthogonal Vectors

How many “almost orthogonal” unit vectors can we have such that all pairwise angles lie between
say 89 and 91 degrees? In R2, the answer is 2. In R3, it is 3. In Rd, it is ecd for some constant
c > 0. Intuitively, to see this note that to get the angle close to 90, we just need to get the dot
product of all vector pairs “close” to 0. When there are many entries in the vector, this is much
easier to do. (more on this later).

2 Some Probability

Some tools from probability will be surprisingly useful for us to both get intuition about high
dimensional geometry and also to do our projections to lower dimensional spaces. To start recall
that a random variable (rv), X is informally a variable whose value depends on the outcome of some
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random phenomena. Typically, random variables have a finite number of possible values in the real
numbers, and we let X also refer to the set of possible outcomes. In this case, the expectation of
a random variable, E(X), is defined as E(X) =

!
x∈X xPr(X = x).

First we prove linearity of expectation. Note that in the following lemma and proof, the random
variables do not need to be independent. This makes the result extremely powerful.

Lemma 1. (Linearity of Expectation) Given a set of random variables X1, . . . Xn, E(
!n

i=1Xi) =!n
i=1E(Xi).

Proof: We first prove this for two random variables X and Y .

E(X + Y ) =
#

x∈X

#

y∈Y
(x+ y)Pr(X = x, Y = y)

=
#

x∈X

#

y∈Y
x · Pr(X = x, Y = y) +

#

y∈Y

#

x∈X
y · Pr(X = x, Y = y)

=
#

x∈X
x · Pr(X = x) +

#

y∈Y
y · Pr(Y = y)

= E(X) + E(Y )

The general result for n random variables now follows by induction. □

Lemma 2. (Markov’s Inequality) Let X be a random variable that only takes on nonnegative
values (i.e. X ≥ 0 always). Then for any λ > 0,

Pr(X ≥ λ) ≤ E(X)

λ
.

Proof: Assume not. Then for some value λ > 0, Pr(X ≥ λ) > E(X)
λ . If this is true, then the

expected value of X can be bounded as:

E(X) ≥
#

i≥λ

iPr(X = i)

≥
#

i≥λ

λPr(X = i)

= λPr(X ≥ λ)

> λ
E(X)

λ
= E(X)

But this sequence of inequalities implies that E(X) > E(X), which is clearly a contradiction. □

2.1 Chernoff Bounds

The following important bound only works for independent random variables. We prove it for
0/1-valued random variables, which only take on the values 0 or 1, and we prove an upper bound.
The lemma generalizes easily to also bound the probability of deviation below the mean.
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Lemma 3. (Chernoff bounds) Let X1, . . . , Xn be independent 0/1-valued random variables and
let pi = E(Xi), where 0 ≤ pi < 1 for all i. Then the sum X =

!
iXi, which has mean µ = E(X) =!

i pi satisfies
Pr(X ≥ (1 + δ)µ) ≤ (cδ)

µ,

where cδ =
eδ

(1+δ)1+δ .

Proof: Consider an arbitrary positive constant t, to be set later, and consider the random variable
etX . (If X = 2, say, this rv is e2t.). A nice property of this random variable is the following:

E(etX) = E
$
et

!
i Xi

%

= E

&
'

i

etXi

(

=
'

i

E(etXi)

The last inequality holds since the Xi random variables are independent, and hence so are the etXi

random variables; and since E(XY ) = E(X)E(Y ) if X and Y are independent. Note that

E(etXi) = (1− pi) + pie
t.

Thus, we have:

'

i

E(etXi) =
'

i

[1 + pi(e
t − 1)]

≤
'

i

epi(e
t−1)

≤ eµ(e
t−1)

In the above, the second step holds by the inequality 1 + x ≤ ex (via Taylor expansion of e.
Recall that ex = 1 + x + x2/2! + x3/3! + . . .). Now, we apply Markov’s inequality to the random
etX to get:

Pr(X ≥ (1 + δ)µ) = Pr(etX ≥ et(1+δ)µ)

≤ eµ(e
t−1)

et(1+δ)µ

≤ eµ((e
t−1)−t(1+δ))

Recall that Markov’s inequality says that for any positive random variable Y , and any λ > 0,

Pr(Y ≥ λ) ≤ E(Y )/λ.

We let Y = etX , and note that E(Y ) ≤ eµ(e
t−1); and we let λ = et(1+δ)µ.

This holds for any positive t, and is minimized when t = ln(1 + δ) (to see this, differentiate to
get the minimum). This gives the lemma statement. □

Using a symmetric argument, we can bound the probability of deviation below the mean.
Combining the results and using some approximations gives the following extremely useful lemma.
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Lemma 4. LetX1, . . . Xn be independent Poisson trials such that P (Xi = 1) = pi. LetX =
!

iXi

and µ = E(X). Then for 0 ≤ δ ≤ 1,

Pr(|X − µ| ≤ δµ) ≤ 2e−µδ2/3

Another concentration bound that is either called Chernoff or Hoeffding Bound, which is proven
in [4]

Lemma 5. [Hoeffding bound] Suppose Xi are independent random variables and ℓi ≤ Xi ≤ hi for
all i ∈ [n]. Then for all t > 0,

Pr(|X − E(X)| > t) ≤ 2e
− 2t2!

i(hi−ℓi)
2

2.1.1 Using Chernoff Bounds

Assume we flip a fair coin n times and let X be the number of heads. Note that E(X) = n/2.
Then by Chernoff bounds, we have that:

Pr(|X − n/2| ≤ δn/2) ≤ 2e−nδ2/6

Q: What is the smallest value of δ that still ensures that we have polynomially small probability?
A: To ensure this, need 2e−nδ2/6 ≤ n−1, which means that −nδ2/6 ≤ − lnn.
How about δ = 1: we get −n1/6 ≤ − lnn which works
How about δ = 1/

√
n: we get −n(1/n)/6 = Θ(1)

How about δ =
"

(lnn)/n: we get −n(lnn)/n/6 = Θ(− lnn). That works!

2.1.2 Bernstein’s Inequality

A related inequality, which is even more closely like the central limit theorem, is the Bernstein
inequality (see [2]). Below is one version of it.

Theorem 1. Let X1, . . . Xn be independent random variables with E(Xi) = 0 and |Xi| ≤ 1 for all
i. Let X =

!
iXi, σ

2
i = E(X2

i )− (E(Xi))
2 and σ2 =

!
i σ

2
i . Then for all 0 ≤ k ≤ σ we have:

Pr(|X| ≥ kσ) ≤ 2e−k2/4

Proof: We’ll bound the X ≥ kσ direction, the theorem follows by using a symmetric proof to
bound the X ≤ kσ direction and then using a union bound.

First note by Markov’s inequality that:

Pr(X ≥ kσ) = Pr(eλX ≥ eλkσ)

≤ E(eλX)

eλkσ
.

So how big is E(etX)?
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E(eλX) =
'

i

E(eλXi)

≤
'

i

E(1 + λXi + (λXi)
2)

=
'

i

)
1 + (λσi)

2
*

≤ e
!

i(λσi)
2

= e(λσ)
2

The first step holds by independency of the Xi. The second step holds by the fact that eλXi ≤
1 + λXi + (λXi)

2 holds for 0 < |λXi| < 1 by the Taylor expansion of eλXi . The third step holds
since E(Xi) = 0, and E(X2

i ) = σ2
i . The fourth step holds since 1 + x ≤ ex for all x. The final step

holds by definition of σ.
Now, we can plug this back into Markov’s inequality to get that:

Pr(X ≥ kσ) = Pr(eλX ≥ eλkσ)

≤ e(λσ)
2

eλkσ

= etσ(λσ−k)

≤ e−k2/4

The last step holds by choosing λ = k/(2σ), which minimizes the right hand side over all values
of λ. Then, the constraint that 0 < |λXi| < 1 always holds if 0 ≤ k ≤ σ.

□

Below is a tighter version of Bernstein’s. It’s proof is similar to the one above.

Theorem 2. (Bernstein Inequality) Let X1, . . . Xn be independent random variables with |Xi −
E(Xi)| ≤ b for each i ∈ [n]. Let X =

!
iXi, and σ2 =

!
i σ

2
i be the variance of X. Then for any

t > 0,

Pr(|X − E(X)| ≥ t) ≤ 2e
− t2

2σ2(1+bt/3σ2)

2.1.3 Geometry of Chernoff Bounds

The following discussion about connections between Chernoff bounds and geometry is from Kel-
ner [3]. Following is a simple generalization of Chernoff bounds.

Theorem 3. Let xi ∈ {±1}n be independent rv’s with Pr(xi = 1) = .5, and let x be a vector with
entries equal to the xi. Let a be any unit vector. Then for all 0 < λ <

√
n.

Pr

&+++++

n#

i=1

a · x

+++++ > λ

(
≤ 2e−λ2/2
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If we let a be the unit vector where all entries have weight 1/
√
n, this is exactly the bound we

just proved. It’s a useful exercise to reprove the bound for any arbitrary unit vector a.
Next, we can change things so that xi ∈ [−1/2,+1/2] and they are uniformly and independently

distributed in that range. Then the bound above still holds up to some constants.
What does this mean geometrically? First, note the following:

Fact 1. a · x is the distance from x to the hyperplane Ha = {x : a · x = 0}

Now we can think of Chernoff bounds in the following way. First, pick any unit vector, a and
let Ha be the hyperplane orthogonal to that vector. Next, pick any point x in the unit hypercube.
Then, by Theorem 3 and Fact 1, the probability that point x is “far” (i.e. distance > λ) from Ha

is small (i.e. 2e−λ2/2).
In particular, if S is the set of all points within distance λ of Ha, and C is the entire hypercube,

then, we have
V ol(S)

V ol(C)
≥ 1− 2e−6λ2

.

Hence, for any hyperplane that cuts through the origin, almost all of the hypercube is “close” to
that plane! (Note that the constant in the exponent improved since the points are in [−1/2,+1/2]
(unit hypercube) instead of [−1,+1] (as in Berstein’s).)

2.2 Union Bounds

The following tool is frequently useful in conjunction with Chernoff bounds.

Lemma 6. (Union Bounds) Consider n events ξ1, . . . ξn. Then we have that

Pr(∪iξi) ≤
n#

i=1

Pr(ξi)

Proof: We’ll show this for two events, the lemma statement then holds by an inductive argument.
Let ξ1 and ξ2 be any two events. Then we have that

Pr(ξ1 ∪ ξ2) = Pr(ξ1) + Pr(ξ2)− Pr(ξ1 ∩ ξ2)

≤ Pr(ξ1) + Pr(ξ2)

□

3 Number of Almost Orthogonal Vectors

One of the benefits of high-dimensional spaces are that they are very “roomy”. For example, we
now show that there are Θ(ed) vectors in Rd that are “almost” orthogonal. Recall that the angle,
θ, between two vectors can be found via the identity cos(θ) = x·y

|x||y| , where | · | is the 2-norm.

Lemma 7. Let a be a unit vector in Rn. Let x = (x1, . . . xn) be a unit vector in Rn created by
choosing each xi independently and uniformly in {−1√

n
, 1√

n
}. Let X = a · x =

!
i aixi. Then for all

0 ≤ t ≤ 1,
Pr(|X| > t) < 2e−nt2/2.

6



CS 506 Lecture: Johnson Lindestrauss Projections

Proof: Note that E(X) = E(
!

i aixi) = 0. This is true since E(aixi) =
1√
n
ai − 1√

n
ai = 0.

We will use the Hoeffding bound so we must compute
!

i(hi − ℓi)
2, where ℓi and hi are upper

and lower bounds for each summand aixi. Note that −ai/
√
n ≤ aixi ≤ ai/

√
n, and so letting

ℓi = −ai/
√
n and hi = ai/

√
n, we have that

n#

i=1

(hi − ℓi)
2 =

n#

i=1

((ai/
√
n+ ai/

√
n))2

= 4/n

n#

i=1

a2i

= 4/n

Where the last step holds since a is a unit vector. Thus, the Hoeffding bound(Lemma 5) gives
that:

Pr(|X| > t) < 2e
− 2t2!

i(ℓi−hi)
2

< 2e−t2n/2

□

From the above, the dot product of any unit vector x ∈ Rn with a “randomly chosen” vector
is “small” with high probability. Since the cosine of two unit vectors x and y equals x · y, we have
the following:

Lemma 8. Let ε > 0 be a fixed constant. Consider a set S of eε
2n/10 vectors in Rn, where each

entry is independently and uniformly chosen in {−1√
n
, 1√

n
}. For any pair of vectors x, y ∈ S, let θx,y

be the angle between x and y. Then for all x, y ∈ S,

Pr(| cos θx,y| > ε) ≤ e−ε2n/5

Proof: Consider some fixed pair of vectors x, y ∈ S. Let ξx,y be the event that x · y > ε. Note that
Pr(| cos θx,y| > ε) = Pr(|x · y| > ε) Thus, by Lemma 7,

Pr(| cos θx,y| > ε) < 2e−ε2n/2

Now let ξ be the event that any pair of vertices violates the bound. In particular, ξ = ∪x,y∈S ξx,y.
Then by a Union bound, we have:

Pr(ξ) ≤
#

x,y∈S,x ∕=y

Pr(ξx,y)

≤ |S|22e−ε2n/2

≤ 2eε
2n/5e−ε2n/2

≤ 2e−ε2n/4

≤ e−ε2n/5

where the last step holds for n sufficiently large. □
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4 Dimension Reduction

In a typical dimension reduction problem, we’re given n points v1, . . . vn ∈ Rd and a fixed ε > 0.
We want to find a function f : Rd → Rm, where m << d such that for all i and j:

|vi − vj | ≤ |f(vi)− f(vj)| ≤ (1 + ε)|vi − vj |

In other words, the distances between points are (approximately) preserved.
Note that many naive ideas fail to achieve this such as: (1) taking a random sample of m

coordinates out of d; and (2) partitioning coordinates into m subsets and add up the values in each
subset.

Idea 1 fails for the case where we have vector x = (0, 0, . . . , 1) and y = (1, 0, 0 . . . , 0). Note that
|x− y| = 1, but any random sample of coordinates is unlikely to find the 1 entry in either of these
vectors. Idea 2 fails for the case that x = (0, 1, 0, 1, . . .) and y = (1, 0, 1, 0, . . .). Note that |x− y| is
large but these sums would be very close.

4.1 Johnson-Lindenstrauss Projection

Let G be a m by d matrix where each entry is a Normal random variable, i.e. Gi,j ∼ N (0, 1). Let
Π = 1√

m
G and let

f(x) = Πx.

So each entry in f(v) equals v ·g for some vector g filled with scaled Normal random variables (note
that Gaussian and Normal are synonmous). Other (simpler) approaches also work (See Section ??
below).

4.2 Analysis

4.3 Reduction to Norm Preservation

Our main lemma is below. Note that, by taking square roots, this theorem implies that

(1− ε)|x| ≤ |Πx| ≤ (1 + ε)|x|.

(For example, by Theorem 4 we have that:

"
(1− ε)|x| ≤ |Πx|

This implies that
(1− ε)|x| ≤

"
(1− ε)|x| ≤ |Πx|

Distance Preservation: Then to prove distance preservation, we note that by the linearity of
f = Π,

|f(x)− f(y)| = |Πx−Πy| = |Π(x− y)|

So with probability 1− δ, we preserve the distance of one pair by Theorem 4. Then we’ll do a
union bound over all pairs, which will increase the error probability by

)
n
2

*
.
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4.4 Main Theorem

Theorem 4. (The (ε, δ)-JL property) If m = 9 log(1/δ)/ε2 then, with probability 1 − δ, for any
vector x,

(1− ε)|x|2 ≤ |Πx|2 ≤ (1 + ε)|x|2

Proof: Let w = Πx. Then we have:

|w|2 = |Πx|2 = | 1√
m
Gx|2 = 1

m

m#

i=1

w2
i .

In the above, we define wi as:

wi =

d#

j=1

xjgj

where each gj ∼ N (0, 1). So E(wi) =
!d

j=1 xjE(gj) = 0. Recall that Var(X) = E(X2) − E2(X).

Thus Var(wi) = E(w2
i ), and so:

Var(wi) = E(w2
i ) =

d#

j=1

Var(xjgj) =

d#

j=1

x2jVar(gj) =

d#

j=1

x2j = |x|2.

The above follows since for independent random variablesX and Y , Var(X+Y ) = Var(X)+Var(Y ).
So now we have that:

E(|w|2) = E

&
1

m

m#

i=1

w2
i

(
=

1

m

m#

i=1

E(w2
i ) =

1

m

m#

i=1

|x|2 = |x|2

So at least things work in expectation. What about concentration? To address this, we make
use of the following fact about normal random variables:

Fact 1: If X and Y are independent and X ∼ N (0, a2) and Y ∼ N (0, b2), then X + Y ∼
N (0, a2 + b2). The property that the sum of Normal distributions remains normal is known as
stability.

By this fact, wi ∼ N (0, |x|2). It follows that w2
i is a χ2 (chi-squared) random variable, and

that |w|2 = 1
m

!m
i=1w

2
i is a chi-squared random variable with m degrees of freedom. These random

variables are very well studied and they concentrate around their mean essentially as well as a
Normal random variable. In particular, if X = 1

m

!m
i=1w

2
i , then we have the following1 for any

positive ε:
P (|X − E(X)| ≥ εE(X)) ≤ 2e−mε2/8.

So if we set m = 9 log(1/δ)/ε2, then we get:

P (|X − E(X)| ≥ εE(x)) ≤ 2e−(9 log(1/δ)/ε2)(ε2/8)

= 2e−((9/8) log(1/δ))

= 2(δ)9/8

≤ δ

The last step above holds when 2δ9/8 ≤ δ, or δ < 1/256. □
1See, e.g., https://www.stat.berkeley.edu/∼mjwain/stat210b/Chap2 TailBounds Jan22 2015.pdf
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Now we can prove the main theorem.

Theorem 5. Assume we are given n points v1, . . . vn ∈ Rd and a fixed ε > 0. Let m = O(log n/ε2)
and set f = Π, where Π is a m by d matrix of independent N (0, 1) random variables. Then, with
probability 1− 1/n, for any i and j, 1 ≤ i < j ≤ n:

(1− ε)|vi − vj | ≤ |Πvi −Πvj)| ≤ (1 + ε)|vi − vj |

Proof: Set δ = 1/n3 and m = 27 log n/ε2. For any fixed pair of points vi and vj , let ξi,j be the
(bad) event that the following does not hold:

|vi − vj | ≤ |Π(vi)−Π(vj)| ≤ (1 + ε)|vi − vj |

By Theorem 4, Pr(ξi,j) ≤ 1/n3. Let ξ be the (bad) event that ξi,j occurs for any vi and vj .
Then, by a Union bound, we know that

Pr(ξ) ≤
#

i,j

Pr(ξi,j)

=

,
n

2

-
1

n3

≤ 1/n.

□

Interestingly, this bound is tight. Noga Alon has shown (in 2018) that there are point sets that
can’t be embedded in less than O(log n/ε2) dimensions if we want to preserve pairwise distances.
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