
CS 506 Lecture: Linear Programming

feasible
polytope

feasible
polytope

c

optimal
vertex

Figure 1. Left: The feasible polytope is defined by multiple half-planes; Right: Goal is to find optimal vertex in the feasible
polytope that is furthest in the direction of the objective function vector c.

Note: These lecture notes are based on the textbook “Computational Geometry” by Berg et al.;
lecture notes from [1]; and lecture notes from MIT 6.854J Advanced Algorithms class by M. Goe-
mans

1 The Linear Programming Problem

In linear programming (LP), we want to find a point in d dimensional space that minimizes a given
linear objective function subject to a set of linear constraints. Frequently, LP is done in 100’s or
1, 000’s of dimensions, but many applications occur in low-dimensional spaces.

Formally, we’re given a set of linear inequalities, called constraints in Rd. Given a point
(x1, . . . xd) ∈ Rd, we can express a constraint as a1x1 + . . . adxd ≤ b, by specifying coefficients
ai, b ∈ R.1 Each constraint defines a halfspace in Rd and the intersection of halfspaces defines a
(possibly empty or unbounded) polytope called the feasible polytope.

Next we’re given a linear objective function to be maximized. Given a point x ∈ Rd, we express
the objective function as c1x1 + . . . cdxd, for coefficients ci.

2 We can think of the coefficients as a
vector c ∈ Rd, and then the value of the objective function for x ∈ Rd is just x ·c. Assuming general
position, it’s not hard to see that if a solution exists, it’ll be achieved by a vertex of the feasible
polytope. See Figure 1.

In general, a d-dimensional LP can be expressed as.

Maximize: c1x1 + c2x2 + . . . cdxd.
Subject to:

a1,1x1 + . . . a1,dxd ≤ b1

a2,1x1 + . . . a2,dxd ≤ b2

. . .

an,1x1 + . . . an,dxd ≤ bn

1Note that there is no loss in generality by assuming ≤ constrains, since we can convert a ≥ to this form by simply
multiplying the inequality by −1.

2Again there is no difference between minimization or maximization since we can negate the coefficients to go
from one to the other.

1



CS 506 Lecture: Linear Programming

feasible
polytope

optimal

c c

vertex

c

optimum

feasible infeasible unbounded

Figure 2. Possible Outcomes of a LP

where x1, . . . xd are the d variables,and ai,j , ci and bi are given real numbers. This can be written
in matrix notation as

Maximize: cTx,
Subject to: Ax ≤ b

Here c and x are d-vectors, b is an n and A is a n by d matrix, where n is the number of constraints.
Note that n should be at least as large as d.

There are three possible outcomes for a given LP problem. See Figure 2
Feasible: An optimal point exists and (assuming general position) is a unique vertex of the feasible
polytope.
InFeasible: The feasible polytope is empty and there is no solution

Unbounded: The feasible polytope is unbounded in the direction of c and so no finite optimal

solution exists.

2 Solving LP in Constant Dimensions

We now discuss the incremental construction method for efficiently solving LP in constant di-
mensions. There are other methods for general LP (such as the interior point method). These
algorithms have weakly polynomial time in that they are polynomial in the number of bits of the in-
put. (This is in contrast to strongly polynomial time algorithms that are polynomial in the number
of values (i.e. numbers) in the input, not in their size).

Incremental construction is a technique that is frequently used in computational geometry.

2.1 Initialization

Recall that we are given n halfspaces {h1, . . . hd} in Rd, and an objective vector c, and we want to
compute the vertex of the feasible polytope that is the most extreme in the direction of c.

We will initially assume that the LP is bounded and that we have d halfspaces that provide us
with an initial feasible point. Our approach will be to add halfspaces one at a time and successively
update this feasible point.

Finding a set of initial d bounding halfplanes is non-trivial. Assume that there is some maximum
value M that any variable can take on. The we add d constraints of the following form for all
variables
1 ≤ i ≤ d xi ≤ M if ci > 0, and −xi ≤ M otherwise. These will be our initial d constraints. See
Figure 3 left.

2



CS 506 Lecture: Linear Programming

c

h1h2

v2
c

vi�1

vi?

hi

vi = vi�1

`i
c

hi

Figure 3. Left: Starting the incremental construction; Right: Proof that new optimum lies on ℓi

Note that if one of these “max value” constraints turns out to intersect the point that is
eventually output, then we know that the original LP is unbounded. In this way, we can detect
unbounded LPs also.

Additionally, we’ll assume that there is a unique solution, which we call the optimal vertex.
This follows via the general position assumption (or by rotating the plane slightly).

2.2 Incremental Algorithm

We can imagine adding the halfspaces hd+1, hd+2, . . . and with each addition, update the current
optimum vertex if necessary. Note that the feasible polytope gets smaller with each halfplane
addition and so the value of the objective function can only decrease. In Figure 4, the y-coordinate
of the feasible vertex decreases.

Let vi be the current optimum vertex after halfplane hi is added. There are two cases that can
occur when hi is added. In the easy case, vi−1 lies in the halfspace hi, and so already satisfies the
constraint. Thus vi = vi−1.

In the hard case, vi−1 is not in the halfplane hi, i.e. it violates the constraint. In this case, the
following lemma shows that vi must lie on the hyperplane that bounds hi.

Lemma 1. After addition of halfplane hi, if the LP is still feasible but vi ∕= vi−1, then vi lies on
the hyperplane bounding hi.

Proof: Let ℓi denote the bounding hyperplane for hi. By way of contradiction, suppose vi does
not lie on ℓi (see Figure 3). Now consider the line segment between vi−1 and vi. First note that
this line segment must cross ℓi since vi is in hi and vi−1 is not. Further, the entire segment is in the
region bounded by the first i− 1 hyperplanes, and so by convexity, the part of the segment that is
in hi is in the region bounded by the first i hyperplanes.

Next, note that the objective function is maximized on this line segment at the point vi−1.
Also, since the objective function is linear, it must be non-decreasing as we move from vi to vi−1.
Thus, there is a point on ℓi with objective function at least equal to vi. But this contradicts the
uniqueness property, so vi must be on ℓi. □

2.3 Recursively updating vi

Consider the case where vi−1 does not lie in hi (Figure 4, left). Again, let ℓi denote the hyperplane
bounding hi. We basically project everything onto that hyperplane and solve a d− 1 dimensional
LP. In particular, we first project c onto ℓi to get the vector c′ (Figure 4, right). Next intersect
each of the halfspaces h1, . . . hi−1 with ℓi. Each projection in a d − 1 dimensional halfspace that
lies on ℓi. Finally, since ℓi is a d − 1 dimensional hyperplane, we can project ℓi onto Rd−1 with a

3



CS 506 Lecture: Linear Programming

vi�1

c
hi

vi
vi

`i `i c0intersect with `i

c0

project onto Rd�1

Figure 4. Projection during the incremental construction.

1-to-1 mapping. Then we apply this mapping to all the other vectors to get a LP in Rd−1 with
i− 1 constraints.

Algebraically, the way we can do this is simply to set the constraint associated with ℓi to equality
and then remove a variable and a constraint from the LP. For example, if the constraint associated
with ℓi is x1 + 2x2 − 3x3 ≤ 5. Then we set x1 = 5− 2x2 + 3x3, do a substitution in the LP using
this equation wherever we see the variable x1 and then remove the variable x1 from the LP. We
can do all this in O(di) time.

2.4 Base Case

The recursion ends when we get an LP in 1-dimensional space. Then the projected objective vector
just points one way or the other on the real line; the intersection of each half-space with ℓi is a ray.
Computing the intersection of a collection of rays on the line can be done in linear time. (This is
the heavy solid line in Figure 4, right). The new optimum is whichever endpoint of this interval
is most extreme in the direction of c′. If the interval is empty, then the feasible polytope is also
empty. So when d = 1, we can solve the LP over i halfplanes in O(i) time.

2.5 Worst-Case Analysis

Let T (d, n) be the runtime for the LP with n constraints in d dimensional space. What is T (d, n)?
If xn−1 satisfies the removed constraint (which takes O(d) time to check), we’re done. If not, we
reduce the LP to only d − 1 variables in O(dn) time (O(d) time to eliminate the variable in each
constraint). So, in the worst case, we get T (d, n) =

!n
i=d+1max(d, di+ T (d− 1, i− 1)). Since d is

constant, can simplify to T (d, n) =
!n

i=d+1(i+ T (d− 1, i− 1)). Unfortunately, the solution to this

recurrence is Θ(nd).

2.6 Randomization to the Rescue

Note that the above analysis assumes we always require a projection, and that we never get the
lucky case where vi−1 is in hi. If we first randomly permute the hyperplanes, we can calculate
the probability of the “lucky” and “unlucky” cases to get an expected runtime. Let pi be the
probability that there is no change to vi−1. Then the expected runtime, up to constant factors that
don’t depend on d, is given by the recurrence relation:

4



CS 506 Lecture: Linear Programming

c

vi

h5

h4

h7
h6

h3

h1

h3

h2
c

vi vi�1

h5

h4

h6

h3

h1

h3

h2
cvi = vi�1

h4

h7
h6

h3

h1

h3

h2

h7

h5

Figure 5. Backwards analysis for Randomized LP

T (d, n) ≤
"

n#

i=d+1

(1− pi)d+ pi(di+ T (d− 1, i))

$

≤
n#

i=d+1

(d+ pi(di+ T (d− 1, i)))

So what is pi? Assuming general position, there are exactly d halfspaces whose intersection
defines the point vi. At step i, there have been i total halfspaces inserted, exactly d of which define
the point vi. Since the halfspaces are randomly permuted, this means that

pi =
d

i

For example, in Figure 5, h7 and h4 define the point vi, so vi changes iff one of these two is the
last of the 7 halfspaces inserted. Note that in this analysis, we have denoted d halfspaces as special
(those that define vi) and only then revealed the permutation order of the first i halfspaces. This
technique is sometimes called backwards analysis or principle of deferred decision.

We can now prove the following.

Lemma 2. T (d, n) ≤ γdd!n, where γd = d+d2

d! + γd−1; γ1 = 1

Proof: We will prove this by induction on d. The base case, d = 1, is trivial since T (1, n) = n.
For the inductive step, we have:

T (d, n) ≤
n#

i=d+1

(d+ pi(di+ T (d− 1, i)))

≤
n#

i=d+1

(d+ (d/i)(di+ γd1(d− 1)!i))

≤
n#

i=d+1

(d+ d2 + γd−1d!

≤ (d+ d2 + γd−1d!)n

≤ γdd!n

Step 2 holds by plugging pi into the recurrence and invoking the inductive hypothesis.
The last step holds provided that γd = d+d2

d! + γd−1. □

5



CS 506 Lecture: Linear Programming

Lemma 3. There is a constant γ such that γd ≤ γ for all d ≥ 1.

Proof: Idea: Show that (d + d2)/d! ≤ 2−d for d sufficiently large. Then bound the geometric
sum. □

Putting these last two lemmas together, we get that:

Lemma 4. T (d, n) = O(d!n).

3 Higher Dimension Convex Hull Algorithms

Note: These lecture notes are based on lecture notes from MIT 6.854J Advanced Algorithms class
by M. Goemans

3.1 Definitions

A polytope is informally a geometric object with “flat” sides. More formally, it is the convex hull
of a finite number of points. Another recursive definition is:

• A 0-polytope is a point

• A 1-polytope is a line segment (edge)

• The sides (faces) of a k-polytope are (k-1)-polytopes that may have (k-2)-polytopes in com-
mon. (For example a 2-polytope has sides that are line segments, which may meet at points.

A simplex is k-polytope that is the convex hull of its k + 1 vertices. Informally, it is the
generalization of the idea of a triangle or tetrahedron.

For any 0 ≤ k < d, a k-face of a d-polytope, P is a face of P with dimension k. A (d-1)-face is
called a facet. A (d-2)-face is called a ridge. A 1-face is a edge, and a 0-face is a vertex.

A simplicial polytope is a polytope where every face is a simplex. It is the convex hull of a set
of points in general positions.

Every facet of a d-polytope has a supporting hyperplane, which is the hyperplane in dimension
d that intersects the entire facet.

3.2 Number of Facets

Even outputting a convex hull in high dimensions can be a challenge. In particular, the worst case
number of facets of a set of n points in d dimensions is Θ(n⌊d/2⌋).

We show this in Section 5.

3.3 Facet Graph

A simplex in d dimensions is defined by d+ 1 points, and has d+ 1 facets. But in general, things
may not be this simple. A convex hull over n points can have many more facets. For an arbitrary
polytope P , the facet graph F(P ) has the following properties:

• Vertices of F(P ) are the facets of conv(P ). Each vertex is associated with the d points that
define the facet.

6



CS 506 Lecture: Linear Programming

Figure 6. Left: 3D polytope, with four vertices labelled a, b, c, d; Right: The corresponding facet graph with vertices for
each of the 4 facets on the left. Each facet vertex is labelled with the 3 points from the set {a, b, c, d} supporting that
facet. There is an edge for every ridge that is labelled with the 2 points supporting that ridge. Note that each facet is
connected to d ridges, and each ridge is connected to 2 facets.

• Edges of F(P ) are the ridges of conv(P ). Each ridge connect two facets, whose intersection
is the ridge. Each ridge is defined by d− 1 points

Assuming general position, there are d ridges bordering each facet. To see this, note that
each facet is uniquely determined by d points. And each ridge bordering that facet is uniquely
determined by d − 1 points. This implies that each facet borders d ridges. For example, if we
have the facet v1, v5, v7, v8, v9. Then this facet borders the 5 ridges: (v5, v7, v8, v9); (v1, v7, v8, v9);
(v1, v5, v8, v9); (v1, v5, v7, v9); (v1, v5, v7, v8).

An example facet graph is give in Figure 6.

4 Convex Hull Algorithm for High Dimensions

Seidel’s algorithm has runtime O(n+n⌊d/2⌋) and assumes points are in general position. For d ≥ 3,
it is optimal. Take a random permutation x1, x2, . . . xn of the points Let Pi be the convex hull of
x1, . . . xi. We incrementally compute Pd+2, . . . , Pn, using notions of visibility.

4.1 Visibility

We make use of the following definitions about visibility.

• A facet F is visible from a point x, if the supporting hyperplane of F separates x from P (the
set of points in the convex hull). Otherwise F is called obscured.

• From the vantage of a point x, a ridge of P is called

– visible: if both facets it connects are visible

– obscured: if both facets are obscured

– a horizon ridge: if one facet is visible and the other obscured.

4.1.1 Algorithm Overview

Our algorithm will incremental, keeping track of the convex hull of points x1, . . . , xi−1. It adds
vertex xi in step i, removing all facets visible from xi and adding in all the new facets induced by
xi. See Figure 7.

7



CS 506 Lecture: Linear Programming

Figure 7. Top: Shaded regions are the facets visible from the point X. Bottom: Visible facets are removed and new facets
are added.

4.1.2 The Ridge Search Tree

The main data structure in our algorithm will be the ridge search tree. This stores the ridges of
the polytope, and each of the stored ridges maintains doubly-linked pointers with the two facets
bordering that ridge. By successively finding ridges in the ridge search tree, and then finding the
corresponding facets, we can easily traverse the facet graph.

This ridge search tree enables lookups of any “key” consisting of a set of d− 1 vertices to either
find the ridge supported by these vertices if it exists in the polytope, or return NIL if that set of
vertices is not a ridge in the polytope.

The search tree for the ridges is height O(d), enabling lookups and insertions in O(d) time. The
idea is that each internal node has branching factor up to n, the number of total possible points
we are finding the convex hull of. To look up a possible ridge, we sort the points in lexicographical
order and then hash in the root node on the first point in the key to get the correct child node. We
continue in this way till we reach a leaf node, and find the ridge if it is in tree, or find the correct
place that it should be inserted if it is not in the tree.

4.2 The algorithm

The algorithm is incremental, keeping track of the convex hull of points x1, . . . , xi−1. It adds vertex
xi in step i, removing all facets visible from xi and adding in all the new facets induced by xi. See
Figure 7.

First, randomly permutes all the points in P . Then, start out with the convex hull formed by

8



CS 506 Lecture: Linear Programming

the first d points. Let Ci−1 be the convex hull of points x1, . . . xi−1.
The algorithm adds points xd+1, . . . xn as follows.

1. Find one facet F of Ci−1 that is visible from xi. If there is no visible facet, skip all steps
below. A visible facet can be found via linear programming in expected O(d!i) time as follows.
We want to find a hyperplane aTx = b (where unknowns are a, b ∈ Rd) such that aTxi = b
and either (1) aTxj ≤ b for all j = 1, . . . , i− 1; or (2) aTxj ≥ b for all j = 1, . . . , i− 1. This
can be found by a linear program in O(d) dimensions, with O(i) constraints. Any solution to
this LP will correspond to a hyperplane supporting a new facet in Ci. Vertices in the facet
can be found by finding the d points on the hyperplane in O(di) time; all incident ridges can
be found in O(d) time. One of the two facets incident to the horizon ridge is a visible facet.
To find which, determine which supporting plane separates xi from x1, x2, . . . , xi−1.

2. Find all visible facets; determine all horizon ridges. Then, delete all visible facets and all
visible ridges. We can do this via depth first search since visible facets and invisible facets
are separated by horizon ridges. We can determine if a facet is visible in O(d) time by seeing
if its supporting hyperplane separates vi from points on the neighboring facet.

3. Construct all new facets. Each horizon ridge corresponds to a new facet combining xi and
the points in the ridge.

4. Each new facet contains d ridges. Find each of these ridges in the ridge search tree, or insert
if new. Update one of the two doubly-linked pointers between each of these ridges and the
newly created facet.

4.3 Example for Step 1

The equation (2, 1)T (x, y) = (3, 4) defines a line in R2. In general, aT (x, y) = b defines a line in R2.
In Step 1, we want to find a vector a and a vector b to ensure that the point xi is on the hyperplane,
and that all other points x1, . . . , xi−1 are on the same side of the halfspace. For example, if i = 3
and x1 = (1, 0), x1 = (0, 1), and x2 = (1, 2), we want to solve the following linear program:

Find variables a1, a2, b1, b2, such that:

(a1, a2)
T (1, 2) = (b1, b2)

(a1, a2)
T (1, 0) ≤ (b1, b2)

(a1, a2)
T (0, 1) ≤ (b1, b2)

Note that technically, each of these lines expands to two linear inequalities. Also, there is
nothing to maximize or minimize, we just want to find any feasible point (which is easier than a
usual LP). Finally, we also can check feasibility for a LP where the last two lines have ≥ instead of
≤.

4.4 Runtime

The time to add point xi is O(i + Ni) where Ni is a random variable giving the number of new
facets created at step i. To see this, first note that step (1) takes expected O(d!i) time to solve
the linear program this is O(i) time assuming d is fixed. In step 2, we delete all visible facets and

9



CS 506 Lecture: Linear Programming

ridges, but the time to do this is charged to when they were created. In step 3, we create Ni new
facets, taking time O(Ni). In step 4, there are at most O(d · Ni) new ridges, each of these can
be processed in the ridge tree in O(d) time, so this step takes O(d2Ni) time. So the total time to
process xi is O(i+Ni).

To get the expected runtime, we can compute E(Ni) using the principle of deferred decision
(aka backward analysis). Recall our claim that if we have a polytope with i vertices in Rd, then the
number of facets is O(i⌊d/2⌋). First, we fix one of the O(i⌊d/2⌋) facets of Ci (see Section 5 for how we
can show there are at most O(i⌊d/2⌋) facets). The probability that the i-th point (xi) participates
in this facet is d/i.

Hence using linearity of expectation over all O(i⌊d/2⌋) facets, E(Ni) = O(di i
⌊d/2⌋) = O(i⌊d/2⌋−1).

Thus, the expected runtime of Seidel’s algorithm is:

n#

i=1

O(i+Ni) =

n#

i=1

O(i+ i⌊d/2⌋−1)

= O(n⌊d/2⌋)

The second step above holds since, for any value d,
!n

i=1 i
d = O(nd+1). This is true since

n#

i=1

id ≤
n#

i=1

nd

= nd+1

5 Bounding the Number of Facets

5.1 Polarity

There are two ways to create polytopes: (1) convex hull of a set of points; and (2) intersection of
a collection of closed halfspaces. We show that these are essentially identical through a concept
caller polar transformation. A polar transformation maps points to hyperplanes and vice versa.
This transformation is another example of duality.

Let O be the origin in Rd for some number d. Then we can view any point p ∈ Rd as a d-element
vector. (If O is not the origin then p can be identified with the vector p−O.) Given two vectors p
and x, recall that p · x is the dot-product of p and x. Then the polar hyperplane of p is denoted :

p∗ = {x ∈ Rd, p · x = 1}.
Clearly this is linear in the coordinates of x, and so p∗ is a hyperplane in Rd. If p is on the

unit sphere centered at O, then p∗ is a hyperplane that passes through p and is orthogonal to the

vector
−→Op.

As pmoves away from the origin along this vector, the dual hyperplane move closer to the origin,
and vice versa, so that the product of their distances from the origin is always 1. See Figure 8(left).

This transformation also has an inverse. Let h be any hyperplane that does not contain O.
Then the polar point of h, denoted h∗ is the point that satisfies h∗ · x = 1 for all x ∈ h.

5.2 Properties

Like with point-line duality, the polar transformation satisfies certain incidence and inclusion prop-
erties between points and hyperplanes.

10



CS 506 Lecture: Linear Programming

1/c

O

O

O

h+

O

h*

p*

O p*+
h*

p

p
h

Inclusion Reversing

Incidence Preserving

p

c

p*

The Polar Transformation

Figure 8.

Let p be any point in Rd and let h be any hyperplane in Rd. The polar transformation satisfies
the following properties. For a hyperplane h, let h+ be the halfspace containing the origin and h−

be the other halfspace for h. Figure 8(right) illustrates the following facts.

• Incidence Preserving: Point p belongs to hyperplane h iff h∗ belongs to p∗

• Inclusion Reversing: Point p belongs to halfspace h+ iff point h∗ belongs to halfspace
(p∗)+. This implies that point p belongs to halfspace h− iff point h∗ belongs to halfspace
(p∗)−). Intuitively, this means that the polarity transform reverses relative positions.

Note that a bijective transformation that preserves incidence relations is called a duality. So
the above claim shows that the polarity transform is another dualtiy.

5.3 Convex Hulls and Halfspace Intersection

We now want to transform a polytope defined as the convex hull of a finite set of points to a
polytope defined as the intersection of a finite set of closed halfspaces. To do this, we need a
mapping from a point to a halfspace. For any point p ∈ Rd, define

p# = (p∗)− = {x ∈ Rd | x · p ≤ 1}

This just first finds the polar hyperplane of p, and then takes the closed halfspace containing the
origin.

Now for any set of points P ⊆ Rd, define its polar image to be the intersection of these halfspaces.

P# = {x ∈ Rd | x · p ≤ 1, ∀p ∈ P}

Thus, P# is the intersection of a finite set of closed halfspaces, one for each p ∈ P . Is P#

convex? Yes, since each halfspace is convex, and the intersection of any set of convex spaces is
convex.

The following lemma shows that P and P# are essentially equivalent via polarity.

Lemma 5. Let S = {p1, . . . pn} be a set of points in Rd and let P = conv(S). Then:

P# = S#

Furthermore:

1. A point a ∈ Rd is on the boundary of P iff the hyperplane a∗ supports P#.

2. Each k-face of P corresponds to a (d− 1− k)-face of P#

11



CS 506 Lecture: Linear Programming

O

(a) (b)

O

P
a

b c

ef

d
a⇤

b⇤

c⇤

e⇤

d⇤f⇤

P#

Figure 9.

Proof: Assume that O is contained within P . We can guarantee this by, e.g., translating P so
that its center of mass coincides with the origin.

Consider some point v1 ∈ P that is on some hyperplane h supported by a facet containing
points v1, v2, . . . , vd ∈ P . [Jared: EXERCISE: What can be said about hyperplanes v∗1, . . . , v

∗
d and

point h∗. ]
Then, hyperplanes v∗1, . . . , v

∗
d contain point h∗ in the polar plane, by the incidence preservation

property. This shows parts (1) and (2) of the lemma.
Now let h1, . . . hℓ be all the hyperplanes that support facets of conv(S). Consider some point

v ∈ S − P (i.e. v is not in conv(S)) and consider all the hyperplanes h1, . . . hℓ that bound facets
of conv(S). Note that v ∈ h+i for all i = 1, . . . , ℓ. [Jared: EXERCISE: What can be said about
hyperplane v∗? What about the points h∗i and the halfspace v∗+? What does this say about P# and
S#]

Then, hyperplane v∗ does not intersect any of the points h∗1, . . . h
∗
ℓ , and each point h∗i is in the

open halfspace v∗+ by the inclusion reversing property. This shows that P# = S# in the polar
plane. (See Figure 9 for an example with point d ∈ S − P . Note that d∗ is a redundant halfspace
in the intersection of planes in the polar space.) □

Thus, the polar image P# of a polytope is structurally isomorphic to P . Also, this proves that
the convex hull problem is equivalent to the halfspace intersection problem in any dimension. In
fact, once we have the incidence graph output from one of the problems, we can just flip that graph
upside down to get the output of the other problem.

As an aside, note that we can talk about polytopes being polar duals of each other. For example,
the cube and the octahedron are polar duals; the dodecahedron and icosohedron are polar duals,
and the tetrahedron is self-dual.

5.4 Some Observations

Incidence Graphs. Figure 10 illustrates an incidence graph for a simplex over 4 vertices in 3
dimensions. Each vertex in the top row is a 3-face (facet), defined by 3 of the 4 vertices. Each
vertex in the next row is a 2-face, defined by 2 of the 4 vertices. Each vertex in the bottom row is
a 1-face (i.e. point), defined by one vertex. An edge in the incidence graph connects two faces if
one if the faces is included in the other.

Two observations. First, the incidence graph of the simplex in the polar plane, can be read
bottom up by just taking the polar halfplane v∗ for each vertex v in the incidence graph, and
thinking of each face as the intersection of a collection of these halfplanes. Second, for a simplex,
there are exactly d + 1 facets. But for an arbitrary polytope, that is the convex hull of n points,
there may be many more facets.

12



CS 506 Lecture: Linear Programming

a

c

b d

3-D polytope: Incidence Graph:

abc acd bcdabd

ab ac ad bc bd

a b c d

cd

Figure 10. Left: Polytope; Right: Incidence graph for all faces

Simplicial Polytope Simple Polytope

Figure 11. The Simplicial (Simple) Polytope is the convex hull (intersection) of points (halfspaces) in general position.

Simple and Simplicial Polytopes. If a polytope is the convex hull of a set of points in Rd in
general position, then for all 0 ≤ j ≤ d − 1, each j-face is a j-simplex. Such a polytope is called
simplicial (see Figure 11.)

In the dual view, consider a polytope that is the intersection of n halfspaces in general position.
Each j-face for 0 ≤ j ≤ d − 1 is the intersection of exactly d − j hyperplanes. Such a polytope is
said to be simple. Note that in simple polytopes, each vertex is incident to exactly d facets. Thus,
the local region around any vertex is equivalent to a simplex.

Among all polytopes with a fixed number of vertices, simplicial polytopes maximize the number
of facets. To see this, note that if there is a degeneracy (i.e. d+1 points on one facet), perturbing
some point on this facet will break it into multiple facets. Dually, among all polytopes with a fixed
number of facets, simple polytopes maximize the number of vertices.

5.5 How Many Facets?

So, how many facets are in a convex hull defined by n points in d dimensional space? The following
theorem has a remarkably beautiful proof (also due to Seidel) that uses polar duality.

Theorem 1. A polytope in Rd that is the convex hull of n points has O(n⌊d/2⌋) facets. A polytope
in Rd that is the intersection of n halfspaces has O(n⌊d/2⌋) vertices.

Proof: We will prove the polar form of the theorem. Consider a polytope defined by intersection
of n halfspaces in general position. By the discussion in the last section, this gives rise to a
simple polytope, which maximizes the number of vertices. Suppose by convention that xd is the
vertical axis. Then given a face, its highest and lowest vertices are defined as those having the
maximum and minimum xd coordinates, respectively. (Note that there are no ties, assuming
symbolic perturbation). Our proof is based on a charging argument. We place a charge at each

13



CS 506 Lecture: Linear Programming

v

This 3-face is charged by v
xd

Figure 12.

vertex. We then move the charge at each vertex to a specially chosen incident face so that no face
receives more than 2 charges.

Consider some vertex v. Note that there are d edges (1-faces) that are incident to v (See
Figure 12 for example in R5). Consider a horizontal (i.e. orthogonal to xd) hyperplane that passes
through v. Note that at least ⌈d/2⌉ of the edges must lie on the same side of this hyperplane (again,
use symbolic perturbation to ensure no two points have exactly the same xd coordinate, so none of
these edges lie on this hyperplane).

Hence, there is a face of dimension at least ⌈d/2⌉ that spans these edges and is incident to v
(e.g. the 3-face above v in Figure 12). So v is either the highest or lowest vertex on this face. We
move v’s charge to this face. Thus, we move the charge of every vertex to a face of dimension at
least ⌈d/2⌉. Also, every such face will receive two such charges - one from its highest and one from
its lowest vertex.

So how many charges are there in total? The number of j-faces is at most
%

n
d−j

&
, since each j

face is the intersection of d− j halfspaces. Thus, the total number of charges is at most:

2

d−1#

j=⌈d/2⌉

'
n

d− j

(
= 2

⌊d/2⌋#

i=1

'
n

i

(

≤ 2

⌊d/2⌋#

i=1

ni

= O(n⌊d/2⌋)

The second step holds since
%
n
x

&
≤ nx, because

%
n
x

&
is the number of ways to choose x items from

a set of size n without replacement, and nx is the number of ways to choose x items from a set of
n with replacement.

The last step holds since a geometric summation is asymptotically equal to its largest term.
Finally, this argument shows that the number of vertices is O(n⌊d/2⌋), since each vertex initially
had exactly one charge. Then the fact that there are O(n⌊d/2⌋) facets for a convex hull of n points
in Rd holds by polar duality, i.e. Lemma 5. □

Is this bound tight? Yes. There is a family of polytopes called cyclic polytopes which match
this asymptotic bound.

14



CS 506 Lecture: Linear Programming

References

[1] David Mount. Computational Geometry. http://www.cs.umd.edu/class/fall2016/cmsc754/
Lects/cmsc754-fall16-lects.pdf, 2016.

15

http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf

