CS 506, HW 1

Prof. Jared Saia, University of New Mexico

You are encouraged to work on this omework in groups of 2 or 3. You may
turn in one writeup per group, but please certify that all members worked on
each problem. Several of these problems are from the book “Computational
Geometry (third edition)” by Berg, et al. Mount’s notes and homework
problems are available in the link off the course web page.

1. In the online convex hull problem, we are given a set of n points one
at a time. After receiving each point, we compute the convex hull of
all points seen so far. Consider this problem in the 2D plane. Give an
efficient online algorithm to update the convex hull when a new point
is given. Analyze your algorithm.
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Figure 1. Example Pareto optimal figure (from David Mount hw).

2. Problem 2, HW 1 from David Mount’s class (Pareto Optimal/Convex
Hull problem) quoted below.
Consider a set of points P = {pi,...p,} in the plane where p; =
(zi,yi). A Pareto set for P, denoted Pareto(P) is a subset of points
P’ such that for each p; € P’, there is no p; € P such that z; > z; and
yj > yi. That is, each point of Pareto(P) has the property that there
is no point of P that is both to the right and above it. Pareto sets are
important whenever you want to optimize two criteria (e.g. accuracy
and precision of a machine learning algorithm, cheapness and flight
“shortness” for airline tickets, etc.), since they represent the optimal



“envelope” of possible solutions.

This problem explores the many similarities between Pareto sets and
convex hulls. Whenever a problem asks for an algorithm, briefly justify
correctness of your algorithm, explain any non-standard data struc-
tures, and derive the runtime.

(a) A point p lies on the convex hull of a set P if and only if there is
a line passing through p such that all the points of P lie on one
side of this line. Provide an analogous assertion for the points of
Pareto(P) in terms of a different shape.

(b) Devise an analogue of Graham’s convex-hull algorithm for com-
puting Pareto(P) in O(nlogn) time. Briefly justify your algo-
rithm’s correctness and derive its runtime. (You don’t need to
explain the algorithm “from scratch”; you can explain what mod-
ifications need to be made to Graham’s algorithm.)

(c) Devise an analogue of Jarvis march algorithm for computing
Paret(P) in O(hn) time where h is the cardinality of Pareto(P).
(As in the last part, you can just explain the differences with
Jarvis’s algorithm.)

(d) Devise an algorithm for computing Pareto(P) in O(nlogh) time.
Hint: Chan!
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Figure 2. Computing an e-sketch (from David Mount hw)

3. Based on (Problem 4, HW 3 from David Mount’s class (e sketch of
convex hull))
You are given a set P of n points lying in the unit square in the plane.



Given any subset Q C P, clearly we have conv(Q) C conv(P). For
€ > 0, we say that @) is an e-sketch of P if every point of P lies within
distance at most € of conv(Q) (See Figure 2 (a)).

(a) Consider the following simple greedy algorithm for computing an
e-sketch of a planar point set P. First let (pg,...,px—1) denote
the vertices of conv(P) listed in counterclockwise order. Put pg in
Q@ and set i < 0. Find the largest index j, i < j < k such that all
the points {pi11,...p;—1} lie within distance € of the line segment
pi,pj (See Fig 2(b)). (Indices are taken modulo k so py = po.) If
J = k then stop. Otherwise, add p; to @, set i <— j and repeat.
Show that this procedure correctly produces an e-sketch of P.

(b) Show that the perimeter of the convex hull P has total length
O(1). Hint: Show that the perimeter of a convex polytope inside
another convex polytope must be smaller than the outer polytope.
To show this, think about what happens to the perimeter when
you repeatedly “slice out” half-planes in order to carve out the
interior polytope from the surrounding polytope.

(c) Next, show that the amount of perimeter of P traversed by the
greedy algorithm between any two points added to @ is always
Q(e). To show this, let v1 be the initial hull vertex in some round
of the greedy algorithm and let v, be the first hull vertex that
has distance greater than e from v;. So d(vi,v;) < € for all
j €1,z — 1] where d(x,y) is the the Euclidean distance between
points x and y. Now what can you say about the distance between
v; and the line between v; and v,?7?7 Hint: draw a picture and
find right triangles.

(d) Now, prove that |Q| = O(1/e). Le., that the size of the sketch is
completely independent of the number of vertices of the original
convex hull (P). What implication does this have on the amount
of space needed to store an e-approximation of all crepe recipes?

4. Hard: Can you adapt the e-sketch convex hull problem to come up
with a similar type of sketch of the upper envelope in an arrangement?
What can you say formally about the number of lines in your sketch
of the upper envelope and how well the sketch approximates the true
upper envelope? (Challenge: Any connections to sketching a Voronoi
diagram?) Hint: Duality preserves vertical distances between a point
and a line, but not the normal distances. Are there constraints on the



line slopes that will allow you to get a correspondence between these
two distances?



