CS 506 Lecture: Linear Programming S’ 2024

optimal
vertex .

feasible feasible

polytope

polytope

Figure 1. Left: The feasible polytope is defined by multiple half-spaces; Right: Goal is to find optimal vertex in the feasible
polytope that is furthest in the direction of the objective function vector c.

Note: These lecture notes are based on the textbook “Computational Geometry” by Berg et al.;
lecture notes from [1]; and lecture notes from MIT 6.854J Advanced Algorithms class by M. Goe-
mans

1 The Linear Programming Problem

In linear programming (LP), we want to find a point in d dimensional space that minimizes a given
linear objective function subject to a set of linear constraints. Currently, LP solvers can handle
about a million dimensions, using a combination of formally analyzable algorithms, and also many
ad hoc heuristics. Here, we're going to focus on an elegant algorithm that has linear expected run
time when the number of dimensions is a constant.

In the LP problem, we’re given a set of linear inequalities, called constraints in R%. Given a
point (x1,...xq) € R?, we can express a constraint as ajz1 + . .. agrq < b, by specifying coefficients
a;, b € R. There is no loss in generality by assuming only these types of constraints, since we can
convert other constraints to this form via multiplication by —1. Each constraint defines a half-space
in R? and the intersection of half-spaces defines a (possibly empty or unbounded) polytope called
the feasible polytope.

Next we’re given a linear objective function to be maximized. Given a point z € R?, we express
the objective function as cix1 + ... cqxq, for coefficients ¢;." We can think of the coefficients as a
vector ¢ € R?, and then the value of the objective function for # € R? is just z-c. Assuming general
position, it’s not hard to see that if a solution exists, it’ll be achieved by a vertex of the feasible
polytope. See Figure 1.

In general, a d-dimensional LP can be expressed as.

Minimize: ¢z + coxa + ... cqxq.

! Again there is no difference between minimization or maximization since we can negate the coefficients to go
from one to the other.

CS 506 Lecture: Linear Programming S’ 2024

feasible infeasible unbounded

lC lc

feasible
polytope

- <e/ 4 S
: 7
X~ optimal
vertex

Figure 2. Possible Outcomes of a LP

be

. Optimum

u

Subject to:

1,171 + ...a1,4Tq > by

(2171 + ...a24%q > bo

Gn121 + ... GndTd > by

where z1, ... x4 are the d variables,and a; ;, ¢; and b; are given real numbers. This can be written
in matrix notation as

Minimie: Tz,

Subject to: Ax > b

Here c and z are d-vectors, bis an n and A is a n by d matrix, where n is the number of constraints.
Note that n should be at least as large as d.

There are three possible outcomes for a given LP problem. See Figure 2
Feasible: An optimal point exists and (assuming general position) is a unique vertex of the feasible
polytope.
Infeasible: The feasible polytope is empty and there is no solution
Unbounded: The feasible polytope is unbounded in the direction of ¢ and so no finite optimal

solution exists.

2 Solving LP in Constant Dimensions

We now discuss the incremental construction method for efficiently solving LP in constant dimen-
sions. There are other methods for general LP (such as the interior point method).

We will use a technique called Incremental construction which is frequently used in computa-
tional geometry.

2.1 Initialization

Recall that we are given n half-spaces {h1,...hq} in R?, and an objective vector ¢, and we want to
compute the vertex of the feasible polytope that is the most extreme in the direction of c.

CS 506 Lecture: Linear Programming S’ 2024

hi

V9 Vi—1

Figure 3. Left: Starting the incremental construction; Right: Proof that new optimum lies on /;

We will initially assume that the LP is bounded and that we have d half-spaces that provide us
with an initial feasible point. Our approach will be to add half-spaces one at a time and successively
update this feasible point.

First, we create a set of initial d bounding half-spaces. Assume that there is some maximum
value M that any variable can take on. We will add d constraints of the following form for all
variables:

Vi€ [1,d], x; < M if ¢; > 0 and —z; < M otherwise.

Then we need to perturb these constrains by small random amounts to ensure that the hy-
perplanes associated with them all intersect. These will be our initial d constraints. See Figure 3
left.

Note that if one of these “max value” constraints turns out to intersect the point that is
eventually output, then we know that the original LP is unbounded. In this way, we can detect
unbounded LPs also.

Additionally, we’ll assume that there is a unique solution, which we call the optimal vertex.
This follows via the general position assumption (or by rotating the plane slightly).

2.2 Incremental Algorithm

We can imagine adding the half-spaces hgi1, hgio,. .. and with each addition, update the current
optimum vertex if necessary. Note that the feasible polytope gets smaller with each halfplane
addition and so the value of the objective function can only decrease. In Figure 4, the y-coordinate
of the feasible vertex decreases.

Let v; be the current optimum vertex after halfplane h; is added. There are two cases that can
occur when h; is added. In the easy case, v;_1 lies in the half-space h;, and so already satisfies the
constraint. Thus v; = v;_1.

In the hard case, v;_1 is not in the halfplane h;, i.e. it violates the constraint. In this case, the
following lemma shows that v; must lie on the hyperplane that bounds h;.

Lemma 1. After addition of halfplane h;, if the LP is still feasible but v; # v;_1, then v; lies on
the hyperplane bounding h;.

Proof: Let ¢; denote the bounding hyperplane for h;. By way of contradiction, suppose v; does
not lie on ¢; (see Figure 3). Now consider the line segment between v;_; and v;. First note that
this line segment must cross ¢; since v; is in h; and v;_1 is not. Further, the entire segment is in the
region bounded by the first i — 1 hyperplanes, and so by convexity, the part of the segment that is
in h; is in the region bounded by the first 7 hyperplanes.

CS 506 Lecture: Linear Programming S’ 2024

l € intersect with ¢; b \

1)2 """""""""""""""""""""""""""""" -

project onto Rd*1§

v

Figure 4. Projection during the incremental construction.

The objective function is minimized on this line segment at the point v;_;. Since the objective
function is linear, it must be non-decreasing as we move from v; to v;_1. Thus, there is a point on
¢; with objective function at least equal to v;. But this contradicts the uniqueness property, so v;
must be on ;. O

2.3 Recursively updating v;

Consider the case where v;_1 does not lie in h; (Figure 4, left). Again, let ¢; denote the hyperplane
bounding h;. We basically project everything onto that hyperplane and solve a d — 1 dimensional
LP. In particular, we first project ¢ onto ¢; to get the vector ¢ (Figure 4, right). Next intersect
each of the half-spaces hq,...h;—1 with ¢;. Each projection is a d — 1 dimensional half-space that
lies on ¢;. Finally, since ¢; is a d — 1 dimensional hyperplane, we can project ¢; onto R%~! with a
1-to-1 mapping. Then we apply this mapping to all the other vectors to get a LP in R4 with
¢ — 1 constraints.

Algebraically, the way we do this is: (1) set the constraint associated with ¢; to equality; and
(2) remove a variable and that constraint from the LP. For example, if the constraint associated
with ¢; is 21 + 222 — 3x3 < 5. Then we set x1 = 5 — 2x9 + 3x3, do a substitution in the LP using
this equation wherever we see the variable x1, and then remove the variable ;1 from the LP. We
can do all this in O(di) time.

2.4 Base Case

The recursion ends when we get an LP in 1-dimensional space. Then the projected objective vector
just points one way or the other on the real line; the intersection of each half-space with ¢; is a
ray. Computing the intersection of a collection of rays on the line can be done in linear time. For
example, see the heavy solid line in Figure 4, right. The optimum is whichever endpoint of this
interval is most extreme in the direction of ¢’. If the interval is empty, then the feasible polytope
is also empty. So when d = 1, we can solve the LP over ¢ halfplanes in O(7) time.

2.5 Worst-Case Analysis

Let T(d,n) be the runtime for the LP with n constraints in d dimensional space. For simplicity, we
will analyze the recursive algorithm where we remove a constraint, recursively solve the LP, and
then either return the recursive solution or project onto the constraint. Then we get the following
analysis.

What is T'(d,n)? If x,_; satisfies the removed constraint (which takes O(d) time to check),
we're done. If not, we reduce the LP to only d — 1 variables in O(dn) time (O(d) time to eliminate
the variable in each constraint). So, in the worst case, we get

CS 506 Lecture: Linear Programming S’ 2024

Figure 5. Backwards analysis for Randomized LP

T(d,n) = T(d,n — 1) + O(dn) + T(d — 1,n — 1)

Unfortunately, the solution to this recurrence is super-linear in n.

2.6 Randomization to the Rescue

Note that the above analysis assumes we always require a projection, and that we never get the
lucky case where v;—1 is in h;. If we first randomly permute the hyperplanes, we can calculate
the probability of the “lucky” and “unlucky” cases to get an expected runtime. Let p; be the
probability that there is no change to v;_1. Then the expected runtime is given by the following
recurrence relation (multiplicative constants in the asymptotic costs set to 1 for simplicity):

T(d,n) =T(d,n — 1) +d+ py(dn+T(d—1,n—1))

So what is p,?7 Assuming general position, there are exactly d half-spaces whose intersection
defines the point v,. At any step i, there have been i total half-spaces inserted, exactly d of which
define the point v;. Since the half-spaces are randomly permuted, this means that

d

Di = —
1

For example, in Figure 5, h7 and h4 define the point v;, so v; changes iff one of these two is
the last of the 7 half-spaces inserted. Note that in this analysis, we have denoted d half-spaces as
special (those that define v;) and only then revealed the permutation order of the first ¢ half-spaces.
This technique is sometimes called backwards analysis or principle of deferred decision.

Plugging p, back into the recurrence, we now get:

d
T(d,n) :T(d,n—l)—ir;T(d—l,n—l)nLdz

with base cases T'(1,n) = O(n) and T'(d,1) = O(d). We can now prove the following.

Lemma 2.
-2
(3
T(d,n) = O > 7 | din | =0(dn)

1<i<d

CS 506 Lecture: Linear Programming S’ 2024

Proof: The base case is clear. For any value of d, let Cy be a constant to be solved for later. We
will show that T'(d,n) < Cyd!n.
We have:

d
T(n,d) :T(d,n—1)+ET(d—1,n—1)+d2

d
< Cyd!(n = 1)+ —Caa(d=1l(n—1) + d?
< Cydin — Cyd! + Cy_qd! + d?

S Cdd!n

where the second step holds by the IH, and the last step holds if:

Cyd! > Cy_q1d) + d?
which holds if

Cy > Cyq +d*/d!

3 Higher Dimension Convex Hull Algorithms

Note: These lecture notes are based on lecture notes from MIT 6.854J Advanced Algorithms class
by M. Goemans

3.1 Definitions

A polytope is informally a geometric object with “flat” sides. More formally, it is the convex hull
of a finite number of points. Another recursive definition is:

e A O-polytope is a point
e A 1-polytope is a line segment (edge)

e The sides (faces) of a k-polytope are (k-1)-polytopes that may have (k-2)-polytopes in com-
mon. (For example a 2-polytope has sides that are line segments, which may meet at points.

A simplex is a k-polytope that is the convex hull of its k& + 1 vertices. Informally, it is the
generalization of the idea of a triangle or tetrahedron.

For any 0 < k < d, a k-face of a d-polytope, P is a face of P with dimension k. A (d-1)-face is
called a facet. A (d-2)-face is called a ridge. A 1-face is a edge, and a O-face is a vertex.

A simplicial polytope is a polytope where every face is a simplex. Assuming general position,
all polytopes are simplicial polytopes.

Every facet of a d-polytope has a supporting hyperplane, which is the hyperplane in dimension
d that intersects the entire facet.

3.2 Number of Facets

Even outputting all facets of a polytope in high dimensions can be a challenge. In particular, the
number of facets may be exponential in the dimension, as we’ll show in Section 5.

CS 506 Lecture: Linear Programming S’ 2024

X1,X2,X3
X1 X2

X2,X3

X2, X3, X4

Figure 6. Left: Part of a 3D simplicial polytope, with four vertices labelled X1, X2, X3, X4; Right: The corresponding
facet graph with the vertices associated with facets X1, X2, X3 and X2, X3, X4 labelled; and also the ridge associated
with vertices X2, X3 is labelled.

3.3 Output of convex-hull algorithm
Seidel’s algorithm outputs a facet graph, F(P):

e Vertices of F(P) are the facets of conv(P). Each vertex is associated with the d points that
define the facet.

e Edges of F(P) are the ridges of conv(P), which connect two facets, whose intersection is the
ridge.

An example facet graph is give in Figure 6.

4 Seidel’s algorithm

Seidel’s algorithm has expected runtime O(n? + nld/ 2J) and assumes points are in general position.
For d > 3, it is optimal. Take a random permutation x1,xo,...x, of the points Let P; be the
convex hull of z1,...x;. We incrementally compute P;o,..., P,, using notions of visibility.

4.1 Preliminaries

Visibility. We make use of the following definitions about visibility.

e A facet F' is wisible from a point z, if the supporting hyperplane of F' separates x from P.
Otherwise F' is called obscured.

e From the vantage of a point x, a ridge of P is called

— wisible: if both facets it connects are visible
— obscured: if both facets are obscured

— a horizon ridge: if one facet is visible and the other obscured.

Ridges. There are d ridges bordering each facet. To see this, note that each facet is uniquely
determined by d points. And each ridge bordering that facet is uniquely determined by d— 1 points.
This implies that each facet borders d ridges. For example, if we have the facet vy, vs, vy, vs, vg.
Then this facet borders the 5 ridges: (vs,v7,vs,v9); (v1,v7,v8,v9); (v1,v5,08,v9); (v1,vs,v7,V9);
(v1, v5, V7, V8).

CS 506 Lecture: Linear Programming S’ 2024

Figure 7. Top: Shaded regions are the facets visible from the point X. Bottom: Visible facets are removed and new facets
are added.

4.2 The algorithm

The algorithm is incremental, keeping track of the convex hull of points x1, ..., ;1. It adds vertex
x; in step 4, removing all facets visible from x; and adding in all the new facets induced by z;. See
Figure 7.

First, we randomly permute all the points in P. Then, we start out with the convex hull formed
by the first d points. Then for any i € [d + 1,n], let C;_1 be the convex hull of points p1,...p;—1.
All ridges in the current hull are maintained in a search tree, with each ridge having doubly-linked
pointers to the two facets forming that ridge. The search tree for the ridges is height O(d), enabling
lookups and insertions in O(d) time. The algorithm adds points z4y1, ...z, as follows.

We will be using normalized hyperplanes: for length d vectors of coefficients @ and variables T,
and real value b, the equation : @’ % = b describes a hyperplane. But also, the same hyperplane is
described by the equation (a’)T# = 1, where the vector o/ = (1/b)a.

We will also use the fact that in any solution to a LP with d variables, at least d constraints
will be tight. To see this recall that the LP solution is a point in d dimensional space, which is
determined by the intersection of d of the hyperplane-delineated constraints (See Figure 2).

1. Find a horizon ridge of C;. If there is no such ridge, skip all steps below. First, we find a
hyperplane a”z = 1 (where unknowns are a € RY) such that a’z; = 1 and either (1) a’z; < 1
forall j=1,...,i—1;0r (2) a’a; > 1 forall j =1,...,i— 1. This hyperplane can be found
by a linear program in d dimensions, with i constraints in O(d!i) time. In any solution to
this LP, d of the constraints will be tight. So the LP solution gives a hyperplane supporting

CS 506 Lecture: Linear Programming S’ 2024

a new facet of C; that contains v;. Also, the d — 1 tight constraints for points in C;_1 will be
the points supporting a horizon ridge!

2. Use the horizon ridge found above to find all visible facets and horizon ridges, via a DFS
in the facet graph. We can do this since visible facets and invisible facets are separated by
horizon ridges, and so all visible facets are connected. To determine if a facet is visible during
the DFS, just check if v; is above the half-plane supporting the facet - by the definition of
C;_1, we already know all points in z1,...,x;_1 are below that half-plane. Delete all visible
facets and all visible ridges.

3. Construct all new facets. Each horizon ridge corresponds to a new facet combining x; and
the points in the ridge.

4. Each new facet contains d ridges. Find each ridge in the ridge search tree, or insert if new.
Keep pointers back to appropriate new facets in order to match each ridge to the two facets
that neighbor it.

4.3 Example for Step 1

We know that e’z = 1 defines a hyperplane in R?. For example, consider the hyperplane
(2,1)T(x,) = 1. In Step 1, we want to find a vector a to ensure that the point z; is on the
hyperplane, and that all other points z1,...,z;—1 are on the same side of the half-space delineated
by the hyperplane. So, if i = 3 and 21 = (1,0), x2 = (0,1), and z3 = (1,2), we want to solve the
following linear program:

Find variables a1, ao, such that:

There is really nothing to maximize or minimize, we just want to find a feasible point, but we
could just minimize an arbitrary function like a; + ao. Finally, we would want to create a second
LP where the last two constraints have > instead of <.

4.4 Runtime

We assume d is a constant and that there are n points.
Lemma 3. Seidel’s convex hull algorithm has expected runtime O(nl%/2! 4 n?)

Proof: The time to add point x; is O(i + N;) where N; is a random variable giving the number of
new facets created when x; is added. To see this, first note that step (1) takes O(d!i) time to solve
the LP; this is O(7) time assuming d is fixed. In step (2), we delete all visible facets and ridges.
Each facet takes O(d) time to process, since determining if it is visible is equivalent to determining
if v; is above the supporting hyperplane. Since this is constant time, we charge the time to delete
these facets and ridges to the time they were created. In step 3, we create N; new facets, taking
time O(N;). In step 4, there are at most O(dN;) new ridges, each of these can be processed in
the ridge tree in O(d) time, so this step takes O(d?N;) time. So the total time to process w; is
O(i + NN;).

CS 506 Lecture: Linear Programming S’ 2024

+
o) o)
h+
o e
. _Inclusion Reversing _ N" "
o) o) P

The Polar Transformation

Figure 8. Polar Transform Properties

To get the expected runtime, we can compute E(NN;) using the principle of deferred decision. A
polytope with i vertices in d dimensions has O(il%/2]) facets (See Theorem 1). First, we fix one of
the facets of C;. Then, the probability that point z; participates in this facet is d/i.

Using linearity of expectation over all O(il%2]) facets, we have E(N;) = O((d/i)il¥/?) =
O(il4/2)=1), Thus, the expected runtime of Seidel’s algorithm is:

D 0@+ Ny) =Y 0+l
i=1 i=1
= O(nl¥/? 4 n?)

The last step holds since for any x > 0, Y. % < > n® = p*tl O

5 Bounding the Number of Facets

5.1 Polar Transformation

There are two key ways to create convex polytopes: (1) convex hull of a set of points; and (2)
intersection of a collection of closed half-spaces. We show that these are essentially identical via
a polar transformation. A polar transformation maps points to hyperplanes and vice versa. This
transformation is another example of duality.

Fix any point O in d-dimensional space. O can be the origin, and then we can view any point
p € R? as a d-element vector. (If O is not the origin then p can be identified with the vector p— O.)
Given two vectors p and z, recall that p-x is the dot-product of p and x. Then the polar hyperplane
of p is denoted:

p*:{xERd, p-x =1}

Clearly this is linear in the coordinates of x, and so p* is a hyperplane in R?. If p is on the
unit sph_e)re centered at O, then p* is a hyperplane that passes through p and is orthogonal to the
vector Op.

As p moves away from the origin along this vector, the dual hyperplane move closer to the origin,
and vice versa, so that the product of their distances from the origin is always 1. See Figure 8(a).

CS 506 Lecture: Linear Programming S’ 2024

5.2 Properties

Like with point-line duality, the polar transformation satisfies certain incidence and inclusion prop-
erties between points and hyperplanes. For example, let A be any hyperplane that does not contain
O. The polar point of h, denoted h* is the point that satisfies h* - x = 1 for all = € h.

Let p be any point in R? and let & be any hyperplane in R%. The polar transformation satisfies
the following properties. For a hyperplane h, let h* be the half-space containing the origin and h~
be the other half-space for h. See Figure 8(b).

e Incidence Preserving: Point p belongs to hyperplane A iff point h* belongs to hyperplane

*

p

e Inclusion Reversing: Point p belongs to half-space h™ iff point h* belongs to half-space
(p*)T. This implies that point p belongs to half-space h~ iff point h* belongs to half-space
(p*)~. Intuitively, the polarity transform reverses relative positions.

A bijective transformation that preserves incidence relations is called a duality. So the above
claim shows that the polarity transform is another dualtiy.

5.3 Convex Hulls and Half-space Intersection

We now want to transform a polytope defined as the convex hull of a finite set of points to a
polytope defined as the intersection of a finite set of closed half-spaces. To do this, we need a
mapping from a point to a half-space. For any point p € R?, define

p" =) ={zeR?|z-p<1}

This just first finds the polar hyperplane of p, and then takes the closed half-space containing the
origin.

Now for any set of points P C R%, define its polar image to be the intersection of these half-
spaces.

P*={zecR|z-p<1,Vpe P}

Thus, P# is the intersection of a finite set of closed half-spaces, one for each p € P. Is P#
convex? Yes, since each half-space is convex, and the intersection of any set of convex spaces is
convex.

The following lemma shows that P and P# are essentially equivalent via polarity.

Lemma 4. Let S = {p1,...p,} be a set of points in R? and let P = conv(S) be the convex hull
containing O. Then:

1. p# = S#

2. For all k € [1,d], each k-face of P corresponds to a ((d + 1) — k)-face of P#

Proof: Assume that O is contained within P. We can guarantee this by, e.g., translating P so
that its center of mass coincides with the origin.

First, we show that (1) P# = S#. Consider some hyperplane h supported by d vertices in a
facet of conv(P). Note that by definition of the convex hull, all points in S are in h™. So, by
inclusion reversing, the point h* is in S#. Hence the point h* is a vertex on the polytope S#. Next,

11

CS 506 Lecture: Linear Programming S’ 2024

b c
a
f e
(a)
Figure 9.
3-D polytope: Incidence Graph:
a abc abd acd bcd

ab ac ad bc b cd

/I
N\
L

a b c d

Figure 10. Left: Polytope; Right: Incidence graph for all faces

consider the d vertices, vy, ...vq on the facet that supports h. By incidence preservation, the point
h* will be at the intersection of the d hyperplanes v7,...v). Hence, the polytope S# in the dual
space will have h* as a vertex and the facets that border this vertex will those that support the
hyperplanes vy, ...v};. So, all vertices and facets of S# will be given by hyperplanes supported by
facets of P and vertices of P respectively. Hence the polytope S# equals the polytope P#. (See
Figure 9 for an example of a point d € S/P and how d* does not delineate the polytope S#. The
hyperplane d* bounds a redundant half-space in the intersection of half-space in the polar space.)

Next we show (2): for all k € [1,d], each k-face of P corresponds to a ((d + 1) — k)-face of P¥.
For k € [1,d], consider some k-face of P that is supported by k vertices vy,...,v;. Then, by (1)
above, hyperplanes v7, ..., v}, are all supported by facets of P#. Hence, the intersection of these k
hyperplanes forms a ((d + 1) — k)-face of the polytope P#. O

Thus, the polar image polytope P# is structurally isomorphic to polytope P. Also, this is a
proof that, in any dimension d, the convex hull problem is equivalent to the half-space intersection
problem. In fact, once we have the incidence graph output from one of the problems, we can just
flip that graph upside down to get the output of the other problem.

As an aside, we can talk about polytopes being polar duals of each other. For example, the
cube and the octahedron are polar duals; the dodecahedron and icosohedron are polar duals, and
the tetrahedron is self-dual.

5.4 Some Observations

CS 506 Lecture: Linear Programming S’ 2024

Simplicial Polytope Simple Polytope

Figure 11. Simplicial and Simple Polytopes

Incidence Graphs. Figure 10 illustrates an incidence graph for a simplex over 4 vertices in 3
dimensions. Each vertex in the top row is a 3-face (facet), defined by 3 of the 4 vertices. Each
vertex in the next row is a 2-face, defined by 2 of the 4 vertices. Each vertex in the bottom row is
a 1-face (i.e. point), defined by one vertex. An edge in the incidence graph connects two faces if
one of the faces is included in the other.

Two observations. First, the incidence graph of the simplex in the polar plane, can be read
bottom up by just taking the polar halfplane v* for each vertex v in the incidence graph, and
thinking of each face as the intersection of a collection of these halfplanes. Second, for a simplex,
there are exactly d 4+ 1 facets. But for an arbitrary polytope that is the convex hull of n points,
there may be many more facets.

Simple and Simplicial Polytopes. If a polytope is the convex hull of a set of points in R¢ in
general position, then for all 0 < j < d — 1, each j-face is a j-simplex. Such a polytope is called
simplicial (see Figure 11.)

In the dual view, consider a polytope that is the intersection of n half-spaces in general position.
Each j-face for 0 < j < d — 1 is the intersection of exactly d — j hyperplanes. Such a polytope is
said to be simple. In simple polytopes, each vertex is incident to exactly d facets. Thus, the local
region around any vertex is equivalent to a simplex.

Among all polytopes with a fixed number of vertices, simplicial polytopes maximize the number
of facets. To see this, note that if there is a degeneracy (i.e. d+1 points on one facet), perturbing
some point on this facet will break it into multiple facets. Dually, among all polytopes with a fixed
number of facets, simple polytopes maximize the number of vertices.

5.5 How Many Facets?

So, how many facets are in a convex hull defined by n points in d dimensional space? The following
theorem has a remarkably beautiful proof (also due to Seidel) that uses polar duality.

Theorem 1. A polytope in R? that is the convex hull of n points has O(nLd/ 2J) facets. A polytope
in R? that is the intersection of n half-spaces has O(nl%/2]) vertices.

Proof: We will prove the polar form of the theorem. Consider a polytope defined by intersection
of n half-spaces in general position. By the discussion in the last section, this gives rise to a simple
polytope. Suppose by convention that x4 is the vertical axis. Then given a face, its highest and
lowest vertices are defined as those having the maximum and minimum z4 coordinates, respectively.
Assuming symbolic perturbation, there will be no ties. Our proof is based on a charging argument.
We start with a charge at each vertex.

Consider some vertex v. Note that there are d edges (1-faces) that are incident to v (See
Figure 12 for example in R®). Consider a horizontal, i.e. orthogonal to x4, hyperplane that passes

13

CS 506 Lecture: Linear Programming S’ 2024

Figure 12.

through v. Since no two points have the same x4 coordinate, at least [d/2] of the edges must lie
on the same side of this hyperplane.

Hence, there is a face of dimension at least [d/2] that spans these edges and is incident to v
(e.g. the 3-face above v in Figure 12). So v is either the highest or lowest vertex on this face. We
assign v’s charge to this face. Thus, we charge every vertex to a face of dimension at least [d/2],
and every such face will be charged at most twice.

So how many charges are there in total? The number of j faces is (d’_’j), since each j face is the
intersection of d — j half-spaces. Thus, the total number of charges is:

a1 14/2)
03 ()22 ()

j=ld/2]

The second step holds since (Z) < n*. The last step holds, since for n > 2, the sum is geometric
and so equals a constant (namely n/(n — 1)) times its largest summand. O

Is this bound tight? Yes. There is a family of polytopes called cyclic polytopes which match
this asymptotic bound.

References

[1] David Mount. Computational Geometry. http://www.cs.umd.edu/class/fall2016/cmsc754/
Lects/cmsc754-falll16-lects.pdf, 2016.

14

http://www.cs.umd.edu/class/fall2016/cmsc754/Lects/cmsc754-fall16-lects.pdf

