University of New Mexico Department of Computer Science

Final Examination

CS 561 Data Structures and Algorithms Fall, 2006

Name:		
Email:		

- Print your name and email, *neatly* in the space provided above; print your name at the upper right corner of *every* page. Please print legibly.
- This is an *closed book* exam. You are permitted to use *only* two pages of "cheat sheets" that you have brought to the exam and a calculator. *Nothing else is permitted.*
- Do all the problems in this booklet. *Show your work!* You will not get partial credit if we cannot figure out how you arrived at your answer.
- Write your answers in the space provided for the corresponding problem. Let us know if you need more paper.
- Don't spend too much time on any single problem. The questions are weighted equally. If you get stuck, move on to something else and come back later.
- If any question is unclear, ask us for clarification.

Question	Points	Score	Grader
1	20		
2	20		
3	20		
4	20		
5	20		
Total	100		

1. Short Answer

For each problem below, give the answer in terms of simplest Θ . Please show your work where appropriate. (2 points each).

(a) Time to find the minimum element in a balanced binary search tree Solution: $\Theta(\log n)$

(b) $\log n!$ Solution: $\Theta(n \log n)$

(c) $\sum_{i=1}^{n} (\ln n)/i$ Solution: $\Theta(\ln^2 n)$

(d) Time to build a heap from an unsorted array Solution: $\Theta(n)$

(e) Solution to the recurrence $T(n) = 2T(n/2) + \log n$ Solution: $\Theta(n)$

(f) Solution to the recurrence $T(n) = 4T(n/2) + n^2$ Solution: $\Theta(n^2 \log n)$

(g) Number of edges in a spanning tree for a connected graph G = (V, E) Solution: |V| - 1

(h) Consider a graph G = (V, E), with negative weight edges. What is the fastest time in which we can determine if there is a negative cycle in G? Solution: We can do this with Bellman-Ford, taking $\Theta(|V||E|)$ time.

(i) What is the expected amount of space used by a skip list storing *n* items? Solution: $\Theta(n)$

(j) Assume we are hashing n items into m bins with a good hash function. What is the expected number of colliding pairs of items? Solution: $\Theta(n^2/m)$

2. Short Answer (10 points each) Where appropriate, circle your final answer.

(a) Solve the following recurrence using annihilators: T(n) = 4T(n-2) + n. Give the solution in general form i.e. do not solve for the constants

Solution: The annihilator of the homogeneous part is $L^2 - 4$ which factors to (L - 2)(L + 2). The annihilator of the non-homogeneous part is $(L - 1)^2$. This implies that the general solution is $T(n) = c_1 2^n + c_2 (-2)^n + c_3 n + c_4$

- (b) Consider a data structure over an initially empty list that supports the following two operations. APPEND-NUMBER(x): Adds the number x to the beginning of the list; and REDUCE-LIST: Traverses the list, computing the sum of all the numbers traversed and then creates a new list that contains only one number, which is this sum.
 - Assume an arbitrary sequence of n operations are performed on this data structure. What is the worst case run time of any particular operation? Solution: $\Theta(n)$. First n-1 APPEND-NUMBER operations and then a REDUCE-LIST operation.
 - Show that the amortized cost of an operation is O(1) using the potential method. Make sure to prove your potential function is valid. Solution: Let $\phi(D)$ equal the number of items in the list. This is a valid potential function (Why?). The amortized cost of an APPEND-NUMBER operation is then $c_i + \phi_i - \phi_{i-1} = 2$. The amortized cost of a REDUCE-LIST operation is $l_i + (1 - l_i) = 1$ where l_i is the length of the list at time *i*.

3. Graph Theory

Assume you are given a set of cities and the highways between them in the form of an undirected graph G = (V, E). Each edge $e \in E$ connects two cities and has a length l(e). You want to get from city s to city t. However, there is one problem: your car can only hold enough gas to travel L miles and there is a gas station in every city, but not between the cities. Therefore you can only take a route e if $l(e) \leq L$

- Given the limitation on your car's fuel tank, show how to determine in linear time (i.e. O(|V| + |E|)) whether there is a feasible route from s to t. Solution: Remove all edges from the graph with length greater than L and then do a DFS starting at s and see if t can be reached
- You are now planning on buying a new car and want to know the minimum fuel tank capacity needed to get from s to t. Give a $O((|V| + |E|) \log |V|)$ time algorithm to do this. Hint: Make two small changes to an algorithm we discussed in class. Your solution to this problem need be no more than three sentences. Solution: Define an edge u, v to be tense if $\max(dist(u), w(u, v)) < dist(v)$ and relax a tense edge (u, v) by setting dist(v) to be $\max(dist(u), w(u, v))$. Then run Dijkstra's with these new changes.

4. Palindromes

A sequence is a palindrome if it is the same whether read left to right or right to left. For instance, the sequence:

has several palindromic subsequences including: C, T, T, C and A, C, T, G, T, C, A (on the other hand, T, C, B is not palindromic). Devise an algorithm that takes a sequence x[1..n] and returns the length of the longest palindromic subsequence. Its running time should be $O(n^2)$. Hint: For integers $1 \le i < j \le n$, let P(i, j) be the length of the longest palindrome in the subsequence x[i..j].

Solution: For i = j, set P(i, j) = 1. For i > j, define P(i, j) = 0. For all other i and j, if x[i] = x[j], let

$$P(i,j) = \max(P(i+1,j), P(i,j-1), P(i+1,j-1) + 2)$$

otherwise, let

$$P(i, j) = \max(P(i+1, j), P(i, j-1))$$

From the recurrence, the dynamic program follows directly.

5. Holiday Shopping

You've just finished all your Holiday shopping at Page One and are now faced with the formidable task of putting n holiday gifts in bags to take home (where n is a large number). More precisely, assume that you have n items, $x_1, x_2, ..., x_n$ with weights $w_1, w_2, ..., w_n$. Each bag can hold total weight 1 and you want to minimize the number of bags used to hold all the items. In other words, you want to partition the n items into the smallest number of sets such that each set has total weight no more than 1. Assume that for all $i, w_i \leq 1$.

Consider the following greedy algorithm. We put x_1 in the first bag. The for i = 2, ..., n, we put x_i in the last bag if there is room for it or start a new bag if there is no room. For example if $w_1 = .2$, $w_2 = .4$, $w_3 = .6$ and $w_4 = .3$, the greedy algorithm will put the first two items in a bag together and the last two items in a separate bag.

- Show that this greedy algorithm is non-optimal by giving an input for which it does not use the smallest number of bags. Solution: Let the weights of the items be 2/3,2/3,1/3,1/3. Then the optimal number of bags is two but the algorithm requires three bags.
- Show that the greedy algorithm has a ratio bound of two. In other words, show that the number of bags used by greedy is no more than 2 * OPT + O(1) where OPT is the minimum number of bags.

Solution: Let $b_1, b_2, ..., b_x$ be the bags used by greedy. For each odd number i between 1 and x - 1, consider the bags b_i and b_{i+1} . The sum of the weights of the items in b_i and b_{i+1} must be at least equal to 1 because of the greedy property. In particular, the first item placed in b_{i+1} could not fit in b_i and so the sum of the weight of this item and all of the items in b_i must be greater than 1. We know that $OPT \ge \sum_i w_i$ and so the previous observation implies that the number of bags used by greedy is no more than 2 * OPT + 1. The 1 is added due to the possibility of having one unpaired bag if x is an odd number.