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1. Short Answer

For each problem below, give the answer in terms of simplest Θ. Please show your work where
appropriate. (2 points each).

(a) Time to find the minimum element in a balanced binary search tree Solution: Θ(log n)

(b) log n! Solution: Θ(n log n)

(c)
∑n

i=1(lnn)/i Solution: Θ(ln2 n)

(d) Time to build a heap from an unsorted array Solution: Θ(n)

(e) Solution to the recurrence T (n) = 2T (n/2) + log n Solution: Θ(n)



(f) Solution to the recurrence T (n) = 4T (n/2) + n2 Solution: Θ(n2 log n)

(g) Number of edges in a spanning tree for a connected graph G = (V,E) Solution: |V | − 1

(h) Consider a graph G = (V,E), with negative weight edges. What is the fastest time in
which we can determine if there is a negative cycle in G? Solution: We can do this with
Bellman-Ford, taking Θ(|V ||E|) time.

(i) What is the expected amount of space used by a skip list storing n items? Solution:
Θ(n)

(j) Assume we are hashing n items into m bins with a good hash function. What is the
expected number of colliding pairs of items? Solution: Θ(n2/m)



2. Short Answer (10 points each) Where appropriate, circle your final answer.

(a) Solve the following recurrence using annihilators: T (n) = 4T (n− 2) + n. Give the solu-
tion in general form i.e. do not solve for the constants

Solution: The annihilator of the homogeneous part is L2 − 4 which factors to (L −
2)(L + 2). The annihilator of the non-homogeneous part is (L − 1)2. This implies that
the general solution is T (n) = c12n + c2(−2)n + c3n + c4



(b) Consider a data structure over an initially empty list that supports the following two
operations. APPEND-NUMBER(x): Adds the number x to the beginning of the list;
and REDUCE-LIST: Traverses the list, computing the sum of all the numbers traversed
and then creates a new list that contains only one number, which is this sum.

• Assume an arbitrary sequence of n operations are performed on this data structure.
What is the worst case run time of any particular operation? Solution: Θ(n). First
n− 1 APPEND-NUMBER operations and then a REDUCE-LIST operation.

• Show that the amortized cost of an operation is O(1) using the potential method.
Make sure to prove your potential function is valid. Solution: Let φ(D) equal the
number of items in the list. This is a valid potential function (Why?). The amortized
cost of an APPEND-NUMBER operation is then ci + φi − φi−1 = 2. The amortized
cost of a REDUCE-LIST operation is li + (1 − li) = 1 where li is the length of the
list at time i.



3. Graph Theory

Assume you are given a set of cities and the highways between them in the form of an
undirected graph G = (V,E). Each edge e ∈ E connects two cities and has a length l(e).
You want to get from city s to city t. However, there is one problem: your car can only hold
enough gas to travel L miles and there is a gas station in every city, but not between the
cities. Therefore you can only take a route e if l(e) ≤ L

• Given the limitation on your car’s fuel tank, show how to determine in linear time (i.e.
O(|V | + |E|)) whether there is a feasible route from s to t. Solution: Remove all edges
from the graph with length greater than L and then do a DFS starting at s and see if t
can be reached

• You are now planning on buying a new car and want to know the minimum fuel tank
capacity needed to get from s to t. Give a O((|V | + |E|) log |V |) time algorithm to do
this. Hint: Make two small changes to an algorithm we discussed in class. Your solution
to this problem need be no more than three sentences. Solution: Define an edge u, v to
be tense if max(dist(u), w(u, v)) < dist(v) and relax a tense edge (u, v) by setting dist(v)
to be max(dist(u), w(u, v)). Then run Dijkstra’s with these new changes.



4. Palindromes

A sequence is a palindrome if it is the same whether read left to right or right to left. For
instance, the sequence:

A,C, T, G, T, C, B, Q, B,A

has several palindromic subsequences including: C, T, T, C and A,C, T, G, T, C, A (on the
other hand, T,C,B is not palindromic). Devise an algorithm that takes a sequence x[1..n]
and returns the length of the longest palindromic subsequence. Its running time should be
O(n2). Hint: For integers 1 ≤ i < j ≤ n, let P (i, j) be the length of the longest palindrome
in the subsequence x[i..j].

Solution: For i = j, set P (i, j) = 1. For i > j, define P (i, j) = 0. For all other i and j, if
x[i] = x[j], let

P (i, j) = max(P (i + 1, j), P (i, j − 1), P (i + 1, j − 1) + 2)

otherwise, let
P (i, j) = max(P (i + 1, j), P (i, j − 1))

From the recurrence, the dynamic program follows directly.



5. Holiday Shopping

You’ve just finished all your Holiday shopping at Page One and are now faced with the
formidable task of putting n holiday gifts in bags to take home (where n is a large number).
More precisely, assume that you have n items, x1, x2, ..., xn with weights w1, w2, ...wn. Each
bag can hold total weight 1 and you want to minimize the number of bags used to hold all
the items. In other words, you want to partition the n items into the smallest number of sets
such that each set has total weight no more than 1. Assume that for all i, wi ≤ 1.

Consider the following greedy algorithm. We put x1 in the first bag. The for i = 2, ..., n,
we put xi in the last bag if there is room for it or start a new bag if there is no room. For
example if w1 = .2, w2 = .4, w3 = .6 and w4 = .3, the greedy algorithm will put the first two
items in a bag together and the last two items in a separate bag.

• Show that this greedy algorithm is non-optimal by giving an input for which it does not
use the smallest number of bags. Solution: Let the weights of the items be 2/3,2/3,1/3,1/3.
Then the optimal number of bags is two but the algorithm requires three bags.

• Show that the greedy algorithm has a ratio bound of two. In other words, show that
the number of bags used by greedy is no more than 2 ∗OPT + O(1) where OPT is the
minimum number of bags.
Solution: Let b1, b2, ..., bx be the bags used by greedy. For each odd number i between 1
and x− 1, consider the bags bi and bi+1. The sum of the weights of the items in bi and
bi+1 must be at least equal to 1 because of the greedy property. In particular, the first
item placed in bi+1 could not fit in bi and so the sum of the weight of this item and all of
the items in bi must be greater than 1. We know that OPT ≥

∑
i wi and so the previous

observation implies that the number of bags used by greedy is no more than 2 ∗OPT +1.
The 1 is added due to the possibility of having one unpaired bag if x is an odd number.




