
CS 561, Lecture 24

Jared Saia

University of New Mexico

Outline

• All Pairs Shortest Paths

• TSP Approximation Algorithm

1

All-Pairs Shortest Paths

• For the single-source shortest paths problem, we wanted to

find the shortest path from a source vertex s to all the other

vertices in the graph

• We will now generalize this problem further to that of finding

the shortest path from every possible source to every possible

destination

• In particular, for every pair of vertices u and v, we need to

compute the following information:

– dist(u, v) is the length of the shortest path (if any) from

u to v

– pred(u, v) is the second-to-last vertex (if any) on the short-

est path (if any) from u to v

2

Example

• For any vertex v, we have dist(v, v) = 0 and pred(v, v) =

NULL

• If the shortest path from u to v is only one edge long, then

dist(u, v) = w(u → v) and pred(u, v) = u

• If there’s no shortest path from u to v, then dist(u, v) = ∞
and pred(u, v) = NULL

3

APSP

• The output of our shortest path algorithm will be a pair of

|V | × |V | arrays encoding all |V |2 distances and predecessors.

• Many maps contain such a distance matric - to find the

distance from (say) Albuquerque to (say) Ruidoso, you look

in the row labeled “Albuquerque” and the column labeled

“Ruidoso”

• In this class, we’ll focus only on computing the distance array

• The predecessor array, from which you would compute the

actual shortest paths, can be computed with only minor ad-

ditions to the algorithms presented here

4

Lots of Single Sources

• Most obvious solution to APSP is to just run SSSP algorithm

|V | times, once for every possible source vertex

• Specifically, to fill in the subarray dist(s, ∗), we invoke either

Dijkstra’s or Bellman-Ford starting at the source vertex s

• We’ll call this algorithm ObviousAPSP

5

ObviousAPSP

ObviousAPSP(V,E,w){

for every vertex s{

dist(s,*) = SSSP(V,E,w,s);

}

}

6

Analysis

• The running time of this algorithm depends on which SSSP

algorithm we use

• If we use Bellman-Ford, the overall running time is O(|V |2|E|) =

O(|V |4)
• If all the edge weights are positive, we can use Dijkstra’s in-

stead, which decreases the run time to Θ(|V ||E|+|V |2 log |V |) =

O(|V |3)

7

Problem

• We’d like to have an algorithm which takes O(|V |3) but which

can also handle negative edge weights

• We’ll see that a dynamic programming algorithm, the Floyd

Warshall algorithm, will achieve this

• Note: the book discusses another algorithm, Johnson’s al-

gorithm, which is asymptotically better than Floyd Warshall

on sparse graphs. However we will not be discussing this

algorithm in class.

8

Dynamic Programming

• Recall: Dynamic Programming = Recursion + Memorization

• Thus we first need to come up with a recursive formulation

of the problem

• We might recursively define dist(u, v) as follows:

dist(u, v) =

0 if u = v

minx

(
dist(u, x) + w(x → v)

)
otherwise

9

The problem

• In other words, to find the shortest path from u to v, try all

possible predecessors x, compute the shortest path from u

to x and then add the last edge u → v

• Unfortunately, this recurrence doesn’t work

• To compute dist(u, v), we first must compute dist(u, x) for

every other vertex x, but to compute any dist(u, x), we first

need to compute dist(u, v)

• We’re stuck in an infinite loop!

10

The solution

• To avoid this circular dependency, we need some additional

parameter that decreases at each recursion and eventually

reaches zero at the base case

• One possibility is to include the number of edges in the short-

est path as this third magic parameter

• So define dist(u, v, k) to be the length of the shortest path

from u to v that uses at most k edges

• Since we know that the shortest path between any two ver-

tices uses at most |V | − 1 edges, what we want to compute

is dist(u, v, |V | − 1)

11

The Recurrence

dist(u, v, k) =

0 if u = v

∞ if k = 0 and u 6= v

minx

(
dist(u, x, k − 1) + w(x → v)

)
otherwise

12

The Algorithm

• It’s not hard to turn this recurrence into a dynamic program-

ming algorithm

• Even before we write down the algorithm, though, we can

tell that its running time will be Θ(|V |4)
• This is just because the recurrence has four variables — u,

v, k and x — each of which can take on |V | different values

• Except for the base cases, the algorithm will just be four

nested “for” loops

13

DP-APSP

DP-APSP(V,E,w){

for all vertices u in V{

for all vertices v in V{

if(u=v)

dist(u,v,0) = 0;

else

dist(u,v,0) = infinity;

}}

for k=1 to |V|-1{

for all vertices u in V{

for all vertices u in V{

dist(u,v,k) = infinity;

for all vertices x in V{

if (dist(u,v,k)>dist(u,x,k-1)+w(x,v))

dist(u,v,k) = dist(u,x,k-1)+w(x,v);

}}}}}

14

The Problem

• This algorithm still takes O(|V |4) which is no better than the

ObviousAPSP algorithm

• If we use a certain divide and conquer technique, there is a

way to get this down to O(|V |3 log |V |) (think about how you

might do this)

• However, to get down to O(|V |3) run time, we need to use

a different third parameter in the recurrence

15

Floyd-Warshall

• Number the vertices arbitrarily from 1 to |V |
• Define dist(u, v, r) to be the shortest path from u to v where

all intermediate vertices (if any) are numbered r or less

• If r = 0, we can’t use any intermediate vertices so shortest

path from u to v is just the weight of the edge (if any)

between u and v

• If r > 0, then either the shortest legal path from u to v goes

through vertex r or it doesn’t

• We need to compute the shortest path distance from u to v

with no restrictions, which is just dist(u, v, |V |)

16

The recurrence

We get the following recurrence:

dist(u, v, r) =

w(u → v) if r = 0

min{dist(u, v, r − 1),

dist(u, r, r − 1) + dist(r, v, r − 1)} otherwise

17

The Algorithm

FloydWarshall(V,E,w){

for u=1 to |V|{

for v=1 to |V|{

dist(u,v,0) = w(u,v);

}}

for r=1 to |V|{

for u=1 to |V|{

for v=1 to |V|{

if (dist(u,v,r-1) < dist(u,r,r-1) + dist(r,v,r-1))

dist(u,v,r) = dist(u,v,r-1);

else

dist(u,v,r) = dist(u,r,r-1) + dist(r,v,r-1);

}}}}

18

Analysis

• There are three variables here, each of which takes on |V |
possible values

• Thus the run time is Θ(|V |3)
• Space required is also Θ(|V |3)

19

Take Away

• Floyd-Warshall solves the APSP problem in Θ(|V |3) time

even with negative edge weights

• Floyd-Warshall uses dynamic programming to compute APSP

• We’ve seen that sometimes for a dynamic program, we need

to introduce an extra variable to break dependencies in the

recurrence.

• We’ve also seen that the choice of this extra variable can

have a big impact on the run time of the dynamic program

20

TSP

• A version of the TSP problem is: “Given a weighted graph

G, what is the shortest Hamiltonian Cycle of G?”

• Where a Hamiltonian Cycle is a path that visits each node

in G exactly once and returns to the starting node

• This TSP problem is NP-Hard by a reduction from Hamilto-

nian Cycle

• However, there is a 2-approximation algorithm for this prob-

lem if the edge weights obey the triangle inequality

21

Triangle Inequality

• In many practical problems, it’s reasonable to make the as-

sumption that the weights, c, of the edges obey the triangle

inequality

• The triangle inequality says that for all vertices u, v, w ∈ V :

c(u, w) ≤ c(u, v) + c(v, w)

• In other words, the cheapest way to get from u to w is always

to just take the edge (u, w)

• In the real world, this is often a pretty natural assumption.

For example it holds if the vertices are points in a plane

and the cost of traveling between two vertices is just the

euclidean distance between them.

22

Approximation Algorithm

• Given a weighted graph G, the algorithm first computes a

MST for G, T , and then arbitrarily selects a root node r of

T .

• It then lets L be the list of the vertices visited in a depth

first traversal of T starting at r.

• Finally, it returns the Hamiltonian Cycle, H, that visits the

vertices in the order L.

23

Approximation Algorithm

Approx-TSP(G){

T = MST(G);

L = the list of vertices visited in a depth first traversal

of T, starting at some arbitrary node in T;

H = the Hamiltonian Cycle that visits the vertices in the

order L;

return H;

}

24

Example Run

Triangle Inequality

• In many practical problems, it’s reasonable to make the as-

sumption that the weights, c, of the edges obey the triangle

inequality

• The triangle inequality says that for all vertices u, v, w ∈ V :

c(u, w) ≤ c(u, v) + c(v, w)

• In other words, the cheapest way to get from u to w is always

to just take the edge (u, w)

• In the real world, this is usually a pretty natural assumption.

For example it holds if the vertices are points in a plane

and the cost of traveling between two vertices is just the

euclidean distance between them.

24

Approximation Algorithm

• Given a weighted graph G, the algorithm first computes a

MST for G, T , and then arbitrarily selects a root node r of

T .

• It then lets L be the list of the vertices visited in a depth

first traversal of T starting at r.

• Finally, it returns the Hamiltonian Cycle, H, that visits the

vertices in the order L.

25

Approximation Algorithm

Approx-TSP(G){

T = MST(G);

L = the list of vertices visited in a depth first traversal

of T, starting at some arbitrary node in T;

H = the Hamiltonian Cycle that visits the vertices in the

order L;

return H;

}

26

Example Run

a d

b f

c
h

e
g

a d

b f

c
h

e
g

a d

b f

c
h

e
g

a d

b f

c
h

e
g

The top left figure shows the graph G (edge weights are just

the Euclidean distances between vertices); the top right figure

shows the MST T . The bottom left figure shows the depth

first walk on T , W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a); the bottom

right figure shows the Hamiltonian cycle H obtained by deleting

repeat visits from W , H = (a, b, c, h, d, e, f, g).

27

The top left figure shows the graph G (edge weights are just

the Euclidean distances between vertices); the top right figure

shows the MST T . The bottom left figure shows the depth

first walk on T , W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a); the bottom

right figure shows the Hamiltonian cycle H obtained by deleting

repeat visits from W , H = (a, b, c, h, d, e, f, g).

25

Analysis

• The first step of the algorithm takes O(|E|+ |V | log |V |) (if

we use Prim’s algorithm)

• The second step is O(|V |)
• The third step is O(|V |).
• Hence the run time of the entire algorithm is polynomial

26

Analysis

An important fact about this algorithm is that: the cost of the

MST is less than the cost of the shortest Hamiltonian cycle.

• To see this, let T be the MST and let H∗ be the shortest

Hamiltonian cycle.

• Note that if we remove one edge from H∗, we have a span-

ning tree, T ′

• Finally, note that w(H∗) ≥ w(T ′) ≥ w(T)

• Hence w(H∗) ≥ w(T)

27

Analysis

• Now let W be a depth first walk of T which traverses each

edge exactly twice (similar to what you did in the hw)

• In our example, W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

• Note that c(W) = 2c(T)

• This implies that c(W) ≤ 2c(H∗)

28

Analysis

• Unfortunately, W is not a Hamiltonian cycle since it visits

some vertices more than once

• However, we can delete a visit to any vertex and the cost will

not increase because of the triangle inequality. (The path

without an intermediate vertex can only be shorter)

• By repeatedly applying this operation, we can remove from

W all but the first visit to each vertex, without increasing

the cost of W .

• In our example, this will give us the ordering H = (a, b, c, h, d, e, f, g)

29

Analysis

• By the last slide, c(H) ≤ c(W).

• So c(H) ≤ c(W) = 2c(T) ≤ 2c(H∗)
• Thus, c(H) ≤ 2c(H∗)
• In other words, the Hamiltonian cycle found by the algorithm

has cost no more than twice the shortest Hamiltonian cycle.

30

Take Away

• Many real-world problems can be shown to not have an effi-

cient solution unless P = NP (these are the NP-Hard prob-

lems)

• However, if a problem is shown to be NP-Hard, all hope is

not lost!

• In many cases, we can come up with an provably good ap-

proximation algorithm for the NP-Hard problem.

31

