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1. Short Answer

For each problem below, give the answer in terms of simplest Θ. Please show your work where
appropriate. (2 points each).

(a) Worst case time to find the minimum element in a min-heap Solution: Θ(1)

(b) Worst case time to find the maximum element in a min-heap Solution: Θ(n) - The
maximum element could be anywhere on the bottom level

(c) Worst case cost of n calls to either Insert or Delete on the most efficient implementation
of the dynamic table that we discussed in class Solution: Θ(n)

(d)
∑n
i=1 log i Solution: Θ(n log n)

(e) Time to find a minimum spanning tree in a graph with n nodes and Θ(n2) edges, using
the fastest algorithm discussed in class
Solution: Prim’s algorithm takes time O(|E|+ |V | log |V |) which is O(n2) in this case



(f) Time to find if a cycle is reachable from some node v in a directed graph with n nodes
and O(n) edges.
Solution: Θ(n) - this can be done with BFS starting at v and checking if there are any
back edges.

(g) Solution to the recurrence T (n) = 2T (n/2) +
√
n Solution: Θ(n)

(h) Expected number of empty bins if you randomly throw 2n balls into n bins. Solution:
This is n(1− 1/n)2n ≤ ne−2 which is Θ(n)

(i) What is the expected time to find the successor of some key (i.e. the node that comes
right after the key) in a skiplist containing n items? Solution: Θ(log n)

(j) Solution to the recurrence T (n) = 2T (n− 1)−T (n− 2) +n (assume all constants in the
solution are greater than 0) Solution: Θ(n3)



2. Short Answer (10 points each) Where appropriate, circle your final answer.

(a) Professor Plum postulates that if every edge on an undirected graph has a unique positive
weight, then the shortest path tree rooted at v on that graph is always the same as the
minimum spanning tree found by Prim’s algorithm when seeded initially with the vertex
v. Is this correct? If so, prove it. If not, give a counter example.
Solution: No. Consider the graph over vertices v, w, x where edge (v, w) has weight 1,
edge (v, x) has weight 2.5 and edge (w, x) has weight 2. The shortest path tree for v is
edges (v, w) and (v, x). The MST found by Prim’s when started at v is (v, x) and (w, x).



(b) Consider a data structure over an initially empty list that supports the following two
operations. APPEND-NUMBER(x): Adds the number x to the beginning of the list;
and MIN-MAX: Traverses the list, computing the minimum and maximum element in
the list, and then creates a new list that contains only two numbers, the minimum and
maximum of the old list.

• Assume an arbitrary sequence of n operations are performed on this data structure.
What is the worst case run time of any particular operation? Solution: Θ(n). First
n− 1 APPEND-NUMBER operations and then a MIN-MAX operation.

• Show that the amortized cost of an operation is O(1) using the potential method.
Make sure to prove your potential function is valid. Solution: Let φ(D) equal the
number of items in the list. This is a valid potential function (Why?). The amortized
cost of an APPEND-NUMBER operation is then ci + φi− φi−1 = 2. The amortized
cost of a MIN-MAX operation is li + (2− li) = 2 where li is the length of the list at
time i.



3. Segmentation

In the segmentation problem, you want to segment text that is written without spaces into
individual words. For example, if you are given the text ”meetateight”, the best segmentation
is ”meet at eight”, not ”me et at eight” or ”meet ate ight”. Assume you are given as a black
box a function q that takes a string of letters x and returns q(x), which gives a measure of
how likely x is to be an English word. The quality of x can be positive or negative so that
q(”me”) is positive, and q(”ight”) is negative. Given a string s, a segmentation of s is a
partition of the letters into contiguous blocks. The total quality of a segmentation is the sum
of the quality of each of the blocks of letters. So the quality of our segmentation above is
q(”meet”) + q(”at”) + q(”eight”). Give an efficient algorithm that takes as input a string s
of length n and returns a segmentation of maximum total quality (assume that a single call
to the q function takes constant time). Analyze your algorithm.

Solution: We will show only how to find the quality value of the best segmentation. Finding
the segmentation itself is straightforward once you know how to compute the optimal quality
(you simple need to use another array to keep track of which arguments are used to achieve
the maximum values in the following). We will define m(i) to be the maximum quality of a
segmentation of s[1..i]. Note that m(1) = q(s[1]) and that
m(j) = maxj′<jm(j′) + q(s[j′+ 1..j]). We can easily create a dynamic program based on this
recurrence by create an array m of size n, and filling it in from left to right using the above
recurrence. The value returned is m(n). This dynamic program will have two loops (an outer
loop to range from j values from 2 to n an inner loop to range over j′ values from 1 to j′−1.)
and so will have running time O(n2).



4. Goods Trading

Assume there are n goods g1, g2, ..., gn and there is an n by n table T such that one unit of good
gi buys T [i, j] units of good gj . Part 1: Give an efficient algorithm to determine whether or not
there is a sequence of goods gi1, gi2, ..., gik such that T [gi1, gi2] ∗T [gi2, gi3] ∗ ... ∗T [gik, gi1] > 1.
In other words, give an algorithm to determine if there is a sequence of goods that can be
traded to actually obtain more of some good. Analyze your algorithm.

Solution: Note that T [gi1, gi2]∗T [gi2, gi3]∗...∗T [gik, gi1] > 1 is true iff 1/T [gi1, gi2]∗1/T [gi2, gi3]∗
...∗1/T [gik, gi1] < 1. Taking logs of both sides, we can express this inequality as −logT [gi1, gi2]−
logT [gi2, gi3]− ...− logT [gik, gi1] < 0. Thus we can create a graph over n vertices, one for each
good. And for every pair of goods gi and gj, we can create an edge with weight −logT [gi, gj ].
There is a negative cycle in this graph iff there the desired sequence of goods exists. We
can use any of our standard algorithms for finding negative cycles since the graph is strongly
connected. If we use Bellman-Ford, our algorithm takes O(n3) time.



Part 2: Give an efficient algorithm to print out such a sequence of goods if one exists. Analyze
your algorithm.

Solution: In the last stage of Bellman-Ford, if there is some edge that is tense,we can just
select one such node, (v1, v2) to be the first edge in the cycle. We run Bellman-Ford another
step to find the next edge, (v2, v3) that points out of v2 that is tense. We continue this process
until we find all the edges in a cycle. This will require running Bellman-Ford for at most n
additional steps so it still has a run time of O(n3).



5. Bad Santa

A Bad Santa has hidden n/2 Nintendo Wii’s in n boxes. A child is presented with each
box in sequence and must decide to either open that box immediately or to pass on the box
and never be able to open it again. The child wants to guarantee she get at least one Wii
while opening the smallest number of boxes in expectation. The Bad Santa knows the child’s
algorithm and places the Wii’s in boxes so as to try to maximize the expected number of
boxes opened. In this problem, you must design and analyze an algorithm for the child that
1) guarantees that the child finds a Wii; and 2) minimizes the expected boxes opened until
that Wii is found.

Hint 1: Birthday paradox; Hint 2: You may again find the following inequality useful 1−x ≤
e−x

A final note, not necessary for solving the problem: this problem has applications in designing
power-efficient sensor networks (the boxes are time steps, opening a box means being awake
for a time step, and the presents represent time steps when important data is broadcast)

Solution: Surprisingly, you can do much better than opening Θ(n) boxes in expectation - You
can open O(

√
n lnn) boxes in expectation. The trick to this problem is the birthday paradox.

Recall that when we talked about the b-day paradox, we noticed that if you throw sqrt(n) balls
into n bins, that you expect at least two balls to fall into one bin. In this problem, such an
event is equivalent to the girl opening a box that has a hidden present in it in the first half,
provided that there are at least sqrt(n) presents in the first half. In particular, the

√
(n) boxes

with prizes in them correspond to special bins. We’re throwing
√

(n) balls into the n/2 total
bins in the first half. The probability that a fixed ball falls in a fixed special bin is 1/n. The
total number of combinations of balls and special bins is

√
(n)∗

√
(n) = n, and so by linearity

of expectation, the expected number of special bins with a ball in them is 1. So if there are√
(n) presents in the first half, and we open

√
(n) boxes randomly, we would expect to find at

least one prize.
The trick is to then realize that if we open up slightly more than

√
(n) boxes, i.e. if we open√

(n) log n boxes then we can turn this expected event into one that will almost certainly occur.
Note that anything that is a bit bigger asymptotically than sqrt(n) works fine (e.g. n1/2+ε for
any ε > 0), and is good for partial credit, it’s just that

√
(n) log n is nearly the smallest you

can go.
The entire solution is then as follows. Choose

√
n lnn boxes from the first n/2 boxes uniformly

at random with replacement, then choose all of the last n/2 boxes. Open each chosen box in
turn until a present is found. This algorithm opens no more than

√
n lnn boxes in expectation

as we will now show by a case based analysis. Case 1: At least
√
n of the first n/2 boxes are

full. In this case, the probability that the algorithm does not find a present in the first n/2
boxes is no more than (1 − 1/

√
n)
√
n lnn ≤ e−

√
lnn ≤ 1/

√
n. Thus the expected number of

boxes the algorithm opens is no more than
√
n lnn + (1/

√
n) ∗ (n/2) = O(

√
n lnn). Case 2:

Less than
√
n of the first n/2 boxes are full. In this case, the algorithm opens at most

√
n lnn

boxes in the first half and at most
√
n boxes in the second half (since at most

√
n boxes in

the second half can be empty. Thus in this case also the expected number of boxes opened is
O(
√
n lnn)




