Why study algorithms?

“Seven years of College down the toilet” - John Belushi in Animal House

- Q: Can I get a programming job without knowing something about algorithms and data structures?
- A: Yes, but do you really want to be programming GUIs your entire life?

Why study algorithms? (II)

- Almost all big companies want programmers with knowledge of algorithms: Microsoft, Google, Oracle, IBM, Yahoo, Sandia, Los Alamos, etc.
- In most programming job interviews, they will ask you several questions about algorithms and/or data structures
- Your knowledge of algorithms will set you apart from the large masses of interviewees who know only how to program
- If you want to start your own company, you should know that many startups are successful because they’ve found better algorithms for solving a problem (e.g. Google, Akamai, etc.)
Why Study Algorithms? (III)

- You'll improve your research skills in almost any area
- You'll write better, faster code
- You'll learn to think more abstractly and mathematically
- It's one of the most challenging and interesting area of CS!

Solution

- Ideas on how to solve this problem?? What if we allowed multiple iterations?

A Real Job Interview Question

The following is a question commonly asked in job interviews in 2002 (thanks to Maksim Noy, see the career center link from the dept web page for the full compilation of questions):

- You are given an array with integers between 1 and 1,000,000.
- All integers between 1 and 1,000,000 are in the array at least once, and one of those integers is in the array twice
- Q: Can you determine which integer is in the array twice? Can you do it while iterating through the array only once?

Naive Algorithm

- Create a new array of ints between 1 and 1,000,000, which we'll use to count the occurrences of each number. Initialize all entries to 0
- Go through the input array and each time a number is seen, update its count in the new array
- Go through the count array and see which number occurs twice.
- Return this number
Naive Algorithm Analysis

• Q: How long will this algorithm take?
• A: We iterate through the numbers 1 to 1,000,000 three times!
• Note that we also use up a lot of space with the extra array
• This is wasteful of time and space, particularly as the input array gets very large (e.g. it might be a huge data stream)
• Q: Can we do better?

Ideas for a better Algorithm

• Note that \(\sum_{i=1}^{n} i = \frac{(n + 1)n}{2} \)
• Let \(S \) be the sum of the input array
• Let \(x \) be the value of the repeated number
• Then \(S = (1,000,000 + 1)1,000,000/2 + x \)
• Thus \(x = S - (1,000,000 + 1)1,000,000/2 \)

A better Algorithm

• Iterate through the input array, summing up all the numbers, let \(S \) be this sum
• Let \(x = S - (1,000,000 + 1)1,000,000/2 \)
• Return \(x \)

Analysis

• This algorithm takes iterates through the input array just once
• It uses up essentially no extra space
• It is at least three times faster than the naive algorithm
• Further, if the input array is so large that it won’t fit in memory, this is the only algorithm which will work!
• These time and space bounds are the best possible
Take Away

- Designing good algorithms matters!
- Not always this easy to improve an algorithm
- However, with some thought and work, you can *almost always* get a better algorithm than the naive approach

How to analyze an algorithm?

- There are several resource bounds we could be concerned about: time, space, communication bandwidth, logic gates, etc.
- However, we are usually most concerned about time
- Recall that algorithms are independent of programming languages and machine types
- Q: So how do we measure resource bounds of algorithms

Random-access machine model

- We will use RAM model of computation in this class
- All instructions operate in serial
- All basic operations (e.g. add, multiply, compare, read, store, etc.) take unit time
- All “atomic” data (chars, ints, doubles, pointers, etc.) take unit space

Worst Case Analysis

- We’ll generally be pessimistic when we evaluate resource bounds
- We’ll evaluate the run time of the algorithm on the worst possible input sequence
- Amazingly, in most cases, we’ll still be able to get pretty good bounds
- Justification: The “average case” is often about as bad as the worst case.
Example Analysis

- Consider the problem discussed last Tuesday about finding a redundant element in an array.
- Let's consider the more general problem, where the numbers are 1 to n instead of 1 to 1,000,000.

Algorithm 1

- Create a new "count" array of ints of size n, which we'll use to count the occurrences of each number. Initialize all entries to 0.
- Go through the input array and each time a number is seen, update its count in the "count" array.
- As soon as a number is seen in the input array which has already been counted once, return this number.

Algorithm 2

- Iterate through the input array, summing up all the numbers, let S be this sum.
- Let $x = S - (n + 1)n/2$.
- Return x.

Example Analysis: Time

- Worst case: Algorithm 1 does $5 \times n$ operations (n inits to 0 in "count" array, n reads of input array, n reads of "count" array (to see if value is 1), n increments, and n stores into count array).
- Worst case: Algorithm 2 does $2 \times n + 4$ operations (n reads of input array, n additions to value S, 4 computations to determine x given S).
Example Analysis: Space

- Worst Case: Algorithm 1 uses \(n \) additional units of space to store the “count” array
- Worst Case: Algorithm 2 uses 2 additional units of space

A Simpler Analysis

- Analysis above can be tedious for more complicated algorithms
- In many cases, we don’t care about constants. \(5n \) is about the same as \(2n + 4 \) which is about the same as \(an + b \) for any constants \(a \) and \(b \)
- However we do still care about the difference in space: \(n \) is very different from 2
- Asymptotic analysis is the solution to removing the tedium but ensuring good analysis

Asymptotic analysis?

- A tool for analyzing time and space usage of algorithms
- Assumes input size is a variable, say \(n \), and gives time and space bounds as a function of \(n \)
- Ignores multiplicative and additive constants
- Concerned only with the rate of growth
- E.g. Treats run times of \(n \), \(10,000 \times n + 2000 \), and \(.5n + 2 \) all the same (We use the term \(O(n) \) to refer to all of them)

What is Asymptotic Analysis?(II)

- Informally, \(O \) notation is the leading (i.e. quickest growing) term of a formula with the coefficient stripped off
- \(O \) is sort of a relaxed version of \(\leq \)
- E.g. \(n \) is \(O(n) \) and \(n \) is also \(O(n^2) \)
- By convention, we use the smallest possible \(O \) value i.e. we say \(n \) is \(O(n) \) rather than \(n \) is \(O(n^2) \)
More Examples

- E.g. \(n, 10,000n - 2000, \) and \(.5n + 2 \) are all \(O(n) \)
- \(n + \log n, n - \sqrt{n} \) are \(O(n) \)
- \(n^2 + n + \log n, 10n^2 + n - \sqrt{n} \) are \(O(n^2) \)
- \(n\log n + 10n \) is \(O(n\log n) \)
- \(10\log^2 n \) is \(O(\log^2 n) \)
- \(n\sqrt{n} + n\log n + 10n \) is \(O(n\sqrt{n}) \)
- \(10,000, 2^{50} \) and 4 are \(O(1) \)

Formal Defn of Big-O

- A function \(f(n) \) is \(O(g(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that \(f(n) \leq cg(n) \) for all \(n \geq n_0 \)

Example

- Algorithm 1 and 2 both take time \(O(n) \)
- Algorithm 1 uses \(O(n) \) extra space
- But, Algorithm 2 uses \(O(1) \) extra space

- Let’s show that \(f(n) = 10n + 100 \) is \(O(g(n)) \) where \(g(n) = n \)
- We need to give constants \(c \) and \(n_0 \) such that \(f(n) \leq cg(n) \) for all \(n \geq n_0 \)
- In other words, we need constants \(c \) and \(n_0 \) such that \(10n + 100 \leq cn \) for all \(n \geq n_0 \)
Example

- We can solve for appropriate constants:
 \[10n + 100 \leq cn \]
 \[10 + 100/n \leq c \]
- So if \(n > 1 \), then \(c \) should be greater than 110.
- In other words, for all \(n > 1 \), \(10n + 100 \leq 110n \)
- So \(10n + 100 \) is \(O(n) \)

Questions

Express the following in \(O \) notation

- \(n^3/1000 - 100n^2 - 100n + 3 \)
- \(\log n + 100 \)
- \(10 * \log^2 n + 100 \)
- \(\sum_{i=1}^{n} i \)

Relatives of big-O

The following are relatives of big-O:

\[O \quad "\leq" \]
\[\Theta \quad "\equiv" \]
\[\Omega \quad "$\geq" \]
\[o \quad "$<" \]
\[\omega \quad "$>" \]

When would you use each of these? Examples:

\[O \quad "$\leq" \quad \text{This algorithm is } O(n^2) \text{ (i.e. worst case is } \Theta(n^2)) \]
\[\Theta \quad "$\equiv" \quad \text{This algorithm is } \Theta(n) \text{ (best and worst case are } \Theta(n)) \]
\[\Omega \quad "$\geq" \quad \text{Any comparison-based algorithm for sorting is } \Omega(n \log n) \]
\[o \quad "$<" \quad \text{Can you write an algorithm for sorting that is } o(n^2)? \]
\[\omega \quad "$>" \quad \text{This algorithm is not linear, it can take time } \omega(n) \]
Rule of Thumb

- Let \(f(n) \), \(g(n) \) be two functions of \(n \)
- Let \(f_1(n) \), be the fastest growing term of \(f(n) \), stripped of its coefficient.
- Let \(g_1(n) \), be the fastest growing term of \(g(n) \), stripped of its coefficient.

Then we can say:

- If \(f_1(n) \leq g_1(n) \) then \(f(n) = O(g(n)) \)
- If \(f_1(n) \geq g_1(n) \) then \(f(n) = \Omega(g(n)) \)
- If \(f_1(n) = g_1(n) \) then \(f(n) = \Theta(g(n)) \)
- If \(f_1(n) < g_1(n) \) then \(f(n) = o(g(n)) \)
- If \(f_1(n) > g_1(n) \) then \(f(n) = \omega(g(n)) \)

More Examples

The following are all true statements:

- \(\sum_{i=1}^{n} i^2 \) is \(O(n^3) \), \(\Omega(n^3) \) and \(\Theta(n^3) \)
- \(\log n \) is \(o(\sqrt{n}) \)
- \(\log n \) is \(o(\log^2 n) \)
- \(10,000n^2 + 25n \) is \(\Theta(n^2) \)

Problems

True or False? (Justify your answer)

- \(n^3 + 4 \) is \(\omega(n^2) \)
- \(n \log n^3 \) is \(\Theta(n \log n) \)
- \(\log^3 5n^2 \) is \(\Theta(\log n) \)
- \(10^{-10}n^2 + n \) is \(\Theta(n) \)
- \(n \log n \) is \(\Omega(n) \)
- \(n^3 + 4 \) is \(o(n^4) \)

Formal Defns

- \(O(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \)
- \(\Theta(g(n)) = \{ f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \text{ for all } n \geq n_0 \} \)
- \(\Omega(g(n)) = \{ f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \} \)
Formal Defns (II)

- \(o(g(n)) = \{ f(n) : \text{for any positive constant } c > 0 \text{ there exists } n_0 > 0 \text{ such that } 0 \leq f(n) < cg(n) \text{ for all } n \geq n_0 \} \)

- \(\omega(g(n)) = \{ f(n) : \text{for any positive constant } c > 0 \text{ there exists } n_0 > 0 \text{ such that } 0 \leq cg(n) < f(n) \text{ for all } n \geq n_0 \} \)

Another Example

- Let \(f(n) = 10 \log^2 n + \log n, \ g(n) = \log^2 n \). Let’s show that \(f(n) = \Theta(g(n)) \).
- We want positive constants \(c_1, c_2 \) and \(n_0 \) such that \(0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \) for all \(n \geq n_0 \)

\[
0 \leq c_1 \log^2 n \leq 10 \log^2 n + \log n \leq c_2 \log^2 n
\]

Dividing by \(\log^2 n \), we get:

\[
0 \leq c_1 \leq 10 + 1/\log n \leq c_2
\]
- If we choose \(c_1 = 1, \ c_2 = 11 \) and \(n_0 = 2 \), then the above inequality will hold for all \(n \geq n_0 \)

In-Class Exercise

Show that for \(f(n) = n + 100 \) and \(g(n) = (1/2)n^2 \), that \(f(n) \neq \Theta(g(n)) \)

- What statement would be true if \(f(n) = \Theta(g(n)) \)?
- Show that this statement can not be true.

Todo

- Read Syllabus
- Visit the class web page: www.cs.unm.edu/~saia/561/
- Sign up for the class mailing list (cs561)
- Read Chapter 3 and 4 in the text