L'Hopital

—

CS 561, Lecture 2

For any functions f(n) and g(n) which approach infinity and are
differentiable, L'Hopital tells us that:

Jared Saia
University of New Mexico
i f(n) — f'(n)
[] ||mn_>ooﬁ = ||mn_>OOTZ)
2
' i Exampl
o Today's Outline L ample
e Q: Which grows faster Inn or \/n?
e Let f(n) =Inn and g(n) =+/n
e Then f'(n) =1/n and ¢'(n) = (1/2)n"1/2
e L'Hopital's Rule e SO we have:
e Log Facts Inn 1/n
e Recurrence Relations n”_,moo—n = anoom 1)
. 2
= n||_)moo—nl/2 (2)
0 (3)

Thus +/n grows faster than Inn and so Inn = O(y/n)

A digression on logS ——— Examples ———

| I_
It rolls down stairs alone or in pairs,
and over your neighbor’s dog,
it's great for a snack or to put on your back, e logl =0
it’s log, log, log! e log2=1
- “The Log Song” from the Ren and Stimpy Show e log32 =5
e log2k =k
e The log function shows up very frequently in algorithm anal-
ysis Note: logn is way, way smaller than n for large values of n
e As computer scientists, when we use log, we’'ll mean logs
(i.e. if no base is given, assume base 2)
4 1
Definition ——— Examples ——
— — P
e |0g39 =2
e log, y is by definition the value z such that z* =y e logs 125 =3
e z/992¥ = y by definition e logy16 =2
e 1095424100 = 100

Facts about exponents ——— Incredibly useful fact about l0gS ——

I_ I_

Recall that:
e Fact 3: log.a =1loga/logec
o (aY)* = x¥*
o x¥p? = g¥t? To prove this, consider the equation a = ¢/°9¢@, take log, of both
sides, and use Fact 2. Memorize this fact
From these, we can derive some facts about logs

Facts about logs — Log facts to memorize —

I_ I_

To prove both equations, raise both sides to the power of 2, and

F 1: 1 = |
use facts about exponents e Fact og(zy) =logz +logy

e Fact 2: loga® =—cloga

e Fact 3: log.a =loga/logc
e Fact 1: log(zy) = logz + logy
e Fact 2: loga® =cloga
g 9 These facts are sufficient for all your logarithm needs. (You just

need to figure out how to use them)
Memorize these two facts

— Logs and O notation ——— — Important Noteé ——

log2n = (logn)?

e Note that loggn = logn/log8.
e Note that loggggn29° = 200 * log n/ log 600. e 1092n is O(log?n), not O(logn)
e Note that logigoog 30%n? = 2xlogn/ log 100000+log 30/ log 100000. e This is true since log?n grows asymptotically faster than
e Thus, loggn, loggognf99, and log1ggooo 30%n2 are all O(logn) log n
e In general, for any constants k1 and k3, logy, n*2 = ks log n/log ki, e All log functions of form kq IogZ§ kqxnks for constants kq, ko,
which is just O(logn) k3.ka and ks are O(loghF2n)
12 14
Take Away — At Home Exercise —
I_ y I_

Simplify and give O notation for the following functions. In the

e All log functions of form kj logy,, k3*nk‘4 for constants k1, ko, big-O notation, write all logs base 2:

k3 and k4 are O(logn)
e For this reason, we don't really “care” about the base of the

2
log function when we do asymptotic notation * Iogzlof
e Thus, binary search, ternary search and k-ary search all take ° Icigg;;
O(logn) time °?2
e loglog+/n

13 15

- - R
— Does big-O really matter? ——— —— Alg: Binary Search ———

L =1 nd At=1
etn 00000 and At s bool BinarySearch (int arr[], int s, int e, int key){

if (e-s<=0) return false;

logn 1.7 %« 10~° seconds
int mid = (e-s8)/2;

vn 3.2% 1074 seconds

n .1 seconds if (key==arr[mid]){
nlogn 1.2 seconds return true;
ny/n 31.6 seconds Yelse if (key < arr[mid]){
n? 2.8 hours return BinarySearch (arr,s,mid,key);}
7212’ 31.17 years elsel
> 1 century return BinarySearch (arr,mid,e,key)}
(from Classic Data Structures in C++4 by Timothy Budd) }
16 | 18
Recurrence Relations — Recurrence Relations —
| I_
“Oh how should I not lust after eternity and after the nuptial
ring of rings, the ring of recurrence” - Friedrich Nietzsche, Thus
Spoke Zarathustra e T(n) =T(n/2) + 1 is an example of a recurrence relation
e A Recurrence Relation is any equation for a function T', where
e Getting the run times of recursive algorithms can be chal- T appears on both the left and right sides of the equation.
lenging e We always want to “solve” these recurrence relation by get-
e Consider an algorithm for binary search (next slide) ting an equation for 7', where T' appears on just the left side
e Let T (n) be the run time of this algorithm on an array of of the equation

size n
e Then we can write T(1) =1, T(n) =T(n/2) +1

17 19

— Recurrence Relations —— —— Example ——

e Let's guess that the solution to T'(n) =T(n/2)+1, T(1) =1

e Whenever we analyze the run time of a recursive algorithm, is T(n) = O(logn)

we will first get a recurrence relation e In other words, T'(n) < clogn for all n > ng, for some positive
e To get the actual run time, we need to solve the recurrence constants ¢, ng

relation e We can prove that T'(n) < clogn is true by plugging back

into the recurrence

20 | 22

o Substitution Method ——— L Proof ——

We prove this by induction:

e B.C.: T(2) =2 < clog?2 provided that ¢ > 2
e ILH.: For all 5 <n, T(5) <clog(y)
e I.S.:

e One way to solve recurrences is the substitution method aka

“guess and check” T(n) = T(n/2)+1 (4)

e What we do is make a good guess for the solution to T'(n), < (clog(n/2))+1 (5)
and then try to prove this is the solution by induction = c(logn—log2)+1 (6)
= clogn—c+1 (7)

< clogn (8)

Last step holds for all n > 0 if ¢ > 1. Thus, entire proof holds if
n>2and ¢ > 2.

21 | 23

— Recurrences and Induction ——

Recurrences and Induction are closely related:

e To find a solution to f(n), solve a recurrence
e To prove that a solution for f(n) is correct, use induction

For both recurrences and induction, we always solve a big prob-
lem by reducing it to smaller problems!

24I

o Some ExampleS —

e The next several problems can be attacked by induction/recurrences

e For each problem, we'll need to reduce it to smaller problems

e Question: How can we reduce each problem to a smaller
subproblem?

25I

— Sum Problem ——

e f(n) is the sum of the integers 1,...,n

26

— Tree Problem ——

e f(n) is the maximum number of leaf nodes in a binary tree
of height n

Recall:

e In a binary tree, each node has at most two children

e A leaf node is a node with no children

e The height of a tree is the length of the longest path from
the root to a leaf node.

27

— Binary Search Problem ——— — Simpler Subproblems —

e Sum Problem: What is the sum of all numbers between 1
and n—1 (i.e. f(n—1))?

e Tree Problem: What is the maximum number of leaf nodes
in a binary tree of height n — 17 (i.e. f(n—1))

e Binary Search Problem: What is the maximum number of
queries that need to be made for binary search on a sorted
array of size n/27 (i.e. f(n/2))

e Dominoes problem: What is the number of ways to tile a
2 by n — 1 rectangle with dominoes? What is the number
of ways to tile a 2 by n — 2 rectangle with dominoes? (i.e.

fln—1), f(n—2))

e f(n) is the maximum number of queries that need to be
made for binary search on a sorted array of size n.

28 | 30

—— Dominoes Problem ——— —— RecurrenceS ——

Sum Problem: f(n) =f(n—1)4+n, f(1) =1

Tree Problem: f(n) =2x% f(n—1), f(0) =1

Binary Search Problem: f(n) = f(n/2)4+ 1, f(2) =1
Dominoes problem: f(n) = f(n —1) + f(n —2), f(1) = 1,
F(2) =2

e f(n) is the number of ways to tile a 2 by n rectangle with
dominoes (a domino is a 2 by 1 rectangle)

29 | 31

Guesses — Sum Problem ——

I_ I_

Want to show that f(n) = (n+ 1)n/2.
Prove by induction on n

Sum Problem: f(n) = (n+ 1)n/2 e Base case: f(1)=2x1/2=1

Tree Problem: f(n) = 2" Inductive hypothesis: for all j <n, f(j) = (j+ 1)j/2
Binary Search Problem: f(n) =logn Inductive step:

e Dominoes problem: f(n) = % (14_2\/3) — % (1*2‘/5) f(n) = f(n—1)4n 9)
= n(n—-1)/24+n (10)
= (n+1)n/2 (11)
32 | 34
o Inductive Proofs — L Tree Problem —

e Want to show that f(n) = 2".
“Trying is the first step to failure” - Homer Simpson e Prove by induction on n
e Base case: f(0)=20=1
. . e Inductive hypothesis: for all j <n, f(j) = 27
e Now that we've made these guesses, we can try using induc- e Inductive step:
tion to prove they're correct (the substitution method) b:
e We'll give inductive proofs that these guesses are correct for fn) = 2«xf(n—-1) (12)
the first three problems = 2x (2”—1) (13)
= 2" (14)

33 | 35

Binary Search Problem

—

Prove by induction on n

Base case: f(2) =log2=1

Inductive hypothesis: for all j < n, f(j) = logj
Inductive step:

fn) = f(n/2)+1

= logn/2+1
= logn—1og2+41
= logn

Want to show that f(n) = logn. (assume n is a power of 2)

(15)
(16)
(17)
(18)

36

—— In Class Exercise

Consider the recurrence f(n) =2f(n/2)+1, f(1)=1
Guess that f(n) <cn — 1:

Q2: What is the inductive hypothesis?
e Q3: Show the inductive step.

Q1: Show the base case - for what values of ¢ does it hold?

37I

Todo

e Read Chapter 3 and 4 in the text
e Work on Homework 1

338

