
CS 561, Lecture 19

Jared Saia

University of New Mexico

Today’s Outline

• Data Structures for Disjoint Sets

1

Disjoint Sets

• A disjoint set data structure maintains a collection {S1, S2, . . . Sk}
of disjoint dynamic sets

• Each set is identified by a representative which is a member

of that set

• Let’s call the members of the sets objects.

2

Operations

We want to support the following operations:

• Make-Set(x): creates a new set whose only member (and

representative) is x

• Union(x,y): unites the sets that contain x and y (call them

Sx and Sy) into a new set that is Sx ∪ Sy. The new set is

added to the data structure while Sx and Sy are deleted. The

representative of the new set is any member of the set.

• Find-Set(x): Returns a pointer to the representative of the

(unique) set containing x

3



Analysis

• We will analyze this data structure in terms of two parame-

ters:

1. n, the number of Make-Set operations

2. m, the total number of Make-Set, Union, and Find-Set

operations

• Since the sets are always disjoint, each Union operation re-

duces the number of sets by 1

• So after n− 1 Union operations, only one set remains

• Thus the number of Union operations is at most n− 1

4

Analysis

• Note also that since the Make-Set operations are included in

the total number of operations, we know that m ≥ n

• We will in general assume that the Make-Set operations are

the first n performed

5

Application

• Myspace is a web site which keeps track of a social network

• When you are invited to join Myspace, you become part of

the social network of the person who invited you to join

• In other words, you can read profiles of people who are friends

of your initial friend, or friends of friends of your initial friend,

etc., etc.

• If you forge links to new people in Myspace, then your social

network grows accordingly

6

Application

• Consider a simplified version of Myspace

• Every object is a person and every set represents a social

network

• Whenever a person in the set S1 forges a link to a person

in the set S2, then we want to create a new larger social

network S1 ∪ S2 (and delete S1 and S2)

• For obvious reasons, we want these operation of Union,

Make-Set and Find-Set to be as fast as possible

7



Example

• Make-Set(“Bob”), Make-Set(“Sue”), Make-Set(“Jane”), Make-

Set(“Joe”)

• Union(“Bob”, “Joe”)

there are now three sets {Bob, Joe}, {Jane}, {Sue}
• Union(“Jane”, “Sue”)

there are now two sets {Bob, Joe}, {Jane, Sue}
• Union(“Bob”,”Jane”)

there is now one set {Bob, Joe, Jane, Sue}

8

Applications

• We will also see that this data structure is used in Kruskal’s

minimum spanning tree algorithm

• Another application is maintaining the connected compo-

nents of a graph as new vertices and edges are added

9

Tree Implementation

• One of the easiest ways to store sets is using trees.

• Each object points to another object, called its parent, ex-

cept for the leader of each set, which points to itself and

thus is the root of the tree.

10

Tree Implementation

• Make-Set is trivial (we just create one root node)

• Find-Set traverses the parent pointers up to the leader (the

root node).

• Union just redirects the parent pointer of one leader to the

other.

(Notice that unlike most tree data structures, objects do not

have pointers down to their children.)

11



Algorithms

Make-Set(x){

parent(x) = x;

}

Find-Set(x){

while(x!=parent(x))

x = parent(x);

return x;

}

Union(x,y){

xParent = Find-Set(x);

yParent = Find-Set(y);

parent(yParent) = xParent;

}

12

Example

Merging two sets stored as trees. Arrows point to parents. The

shaded node has a new parent.

13

Analysis

• Make-Set takes Θ(1) time

• Union takes Θ(1) time in addition to the calls to Find-Set

• The running time of Find-Set is proportional to the depth of

x in the tree. In the worst case, this could be Θ(n) time

14

Problem

• Problem: The running time of Find-Set is very slow

• Q: Is there some way to speed this up?

• A: Yes we can ensure that the depths of our trees remain

small

• We can do this by using the following strategy when merging

two trees: we make the root of the tree with fewer nodes a

child of the tree with more nodes

• This means that we need to always store the number of

nodes in each tree, but this is easy

15



The Code

Make-Set(x){

parent(x) = x;

size(x) = 1;

}

Union(x,y){

xRep = Find-Set(x);

yRep = Find-Set(y);

if (size(xRep)) > size(yRep)){

parent(yRep) = xRep;

size(xRep) = size(xRep) + size(yRep);

}else{

parent(xRep) = yRep;

size(yRep) = size(yRep) + size(xRep);

}

}

16

Analysis

• It turns out that for these algorithms, all the functions run

in O(logn) time

• We will be showing this is the case in the In-Class exercise

• We will show this by showing that the heights of all the trees

are always logarithmic in the number of nodes in the tree

17

In-Class Exercise

• We will show that the depth of our trees are no more than

O(logx) where x is the number of nodes in the tree

• We will show this using proof by induction on, x, the number

of nodes in the tree

• We will consider a tree with x nodes and, using the inductive

hypothesis (and facts about our algs), show that it has a

height of of O(logx)

18

The Facts

• Let T be a tree with x nodes that was created by a call to

the Union Algorithm

• Note that T must have been created by merging two trees

T1 and T2

• Let T2 be the tree with the smaller number of nodes

• Then the root of T is the root of T1 and a child of this root

is the root of the tree T2

• Key fact: the number of nodes in T2 is no more than x/2

19



In-Class Exercise

To prove: Any tree T with x nodes, created by our algorithms,

has depth no more than logx

• Q1: Show the base case (x = 1)

• Q2: What is the inductive hypothesis?

• Q3: Complete the proof by giving the inductive step. (hint:

note that depth(T) = Max(depth(T1),depth(T2)+1)

20

Problem

• Q: O(logn) per operation is not bad but can we do better?

• A: Yes we can actually do much better but it’s going to take

some cleverness (and amortized analysis)

21

Shallow Threaded Trees

• One good idea is to just have every object keep a pointer to

the leader of it’s set

• In other words, each set is represented by a tree of depth 1

• Then Make-Set and Find-Set are completely trivial, and they

both take O(1) time

• Q: What about the Union operation?

22

Union

• To do a union, we need to set all the leader pointers of one

set to point to the leader of the other set

• To do this, we need a way to visit all the nodes in one of the

sets

• We can do this easily by “threading” a linked list through

each set starting with the sets leaders

• The threads of two sets can be merged by the Union algo-

rithm in constant time

23



The Code

Make-Set(x){

leader(x) = x;

next(x) = NULL;

}

Find-Set(x){

return leader(x);

}

24

The Code

Union(x,y){

xRep = Find-Set(x);

yRep = Find-Set(y);

leader(y) = xRep;

while(next(y)!=NULL){

y = next(y);

leader(y) = xRep;

}

next(y) = next(xRep);

next(xRep) = yRep;

}

25

Example

Merging two sets stored as threaded trees.

Bold arrows point to leaders; lighter arrows form the threads.

Shaded nodes have a new leader.

26

Analysis

• Worst case time of Union is a constant times the size of the

larger set

• So if we merge a one-element set with a n element set, the

run time can be Θ(n)

• In the worst case, it’s easy to see that n operations can take

Θ(n2) time for this alg

27



Problem

• The main problem here is that in the worst case, we always

get unlucky and choose to update the leader pointers of the

larger set

• Instead let’s purposefully choose to update the leader point-

ers of the smaller set

• This will require us to keep track of the sizes of all the sets,

but this is not difficult

28

The Code

Make-Weighted-Set(x){

leader(x) = x;

next(x) = NULL;

size(x) = 1;

}

29

The Code

Weighted-Union(x,y){

xRep = Find-Set(x);

yRep = Find-Set(y)

if(size(xRep)>size(yRep){

Union(xRep,yRep);

size(xRep) = size(xRep) + size(yRep);

}else{

Union(yRep,xRep);

size(yRep) = size(xRep) + size(yRep);

}

}

30

Analysis

• The Weighted-Union algorithm still takes Θ(n) time to merge

two n element sets

• However in an amortized sense, it is more efficient:

• A sequence of m Make-Weighted-Set operations and n Weighted-

Union operations takes O(m+n logn) time in the worst case.

31


