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Today’s Outline

• Data Structures for Disjoint Sets
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Disjoint Sets

• A disjoint set data structure maintains a collection {S1, S2, . . . Sk}
of disjoint dynamic sets

• Each set is identified by a representative which is a member

of that set

• Let’s call the members of the sets objects.
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Operations

We want to support the following operations:

• Make-Set(x): creates a new set whose only member (and

representative) is x

• Union(x,y): unites the sets that contain x and y (call them

Sx and Sy) into a new set that is Sx ∪ Sy. The new set is

added to the data structure while Sx and Sy are deleted. The

representative of the new set is any member of the set.

• Find-Set(x): Returns a pointer to the representative of the

(unique) set containing x
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Analysis

• We will analyze this data structure in terms of two parame-

ters:

1. n, the number of Make-Set operations

2. m, the total number of Make-Set, Union, and Find-Set

operations

• Since the sets are always disjoint, each Union operation re-

duces the number of sets by 1

• So after n− 1 Union operations, only one set remains

• Thus the number of Union operations is at most n− 1
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Analysis

• Note also that since the Make-Set operations are included in

the total number of operations, we know that m ≥ n

• We will in general assume that the Make-Set operations are

the first n performed
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Application

• Myspace is a web site which keeps track of a social network

• When you are invited to join Myspace, you become part of

the social network of the person who invited you to join

• In other words, you can read profiles of people who are friends

of your initial friend, or friends of friends of your initial friend,

etc., etc.

• If you forge links to new people in Myspace, then your social

network grows accordingly
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Application

• Consider a simplified version of Myspace

• Every object is a person and every set represents a social

network

• Whenever a person in the set S1 forges a link to a person

in the set S2, then we want to create a new larger social

network S1 ∪ S2 (and delete S1 and S2)

• For obvious reasons, we want these operation of Union,

Make-Set and Find-Set to be as fast as possible
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Example

• Make-Set(“Bob”), Make-Set(“Sue”), Make-Set(“Jane”), Make-

Set(“Joe”)

• Union(“Bob”, “Joe”)

there are now three sets {Bob, Joe}, {Jane}, {Sue}
• Union(“Jane”, “Sue”)

there are now two sets {Bob, Joe}, {Jane, Sue}
• Union(“Bob”,”Jane”)

there is now one set {Bob, Joe, Jane, Sue}
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Applications

• We will also see that this data structure is used in Kruskal’s

minimum spanning tree algorithm

• Another application is maintaining the connected compo-

nents of a graph as new vertices and edges are added
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Tree Implementation

• One of the easiest ways to store sets is using trees.

• Each object points to another object, called its parent, ex-

cept for the leader of each set, which points to itself and

thus is the root of the tree.
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Tree Implementation

• Make-Set is trivial (we just create one root node)

• Find-Set traverses the parent pointers up to the leader (the

root node).

• Union just redirects the parent pointer of one leader to the

other.

(Notice that unlike most tree data structures, objects do not

have pointers down to their children.)
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Algorithms

Make-Set(x){

parent(x) = x;

}

Find-Set(x){

while(x!=parent(x))

x = parent(x);

return x;

}

Union(x,y){

xParent = Find-Set(x);

yParent = Find-Set(y);

parent(yParent) = xParent;

}
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Example

Merging two sets stored as trees. Arrows point to parents. The

shaded node has a new parent.
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Analysis

• Make-Set takes Θ(1) time

• Union takes Θ(1) time in addition to the calls to Find-Set

• The running time of Find-Set is proportional to the depth of

x in the tree. In the worst case, this could be Θ(n) time
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Problem

• Problem: The running time of Find-Set is very slow

• Q: Is there some way to speed this up?

• A: Yes we can ensure that the depths of our trees remain

small

• We can do this by using the following strategy when merging

two trees: we make the root of the tree with fewer nodes a

child of the tree with more nodes

• This means that we need to always store the number of

nodes in each tree, but this is easy
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The Code

Make-Set(x){

parent(x) = x;

size(x) = 1;

}

Union(x,y){

xRep = Find-Set(x);

yRep = Find-Set(y);

if (size(xRep)) > size(yRep)){

parent(yRep) = xRep;

size(xRep) = size(xRep) + size(yRep);

}else{

parent(xRep) = yRep;

size(yRep) = size(yRep) + size(xRep);

}

}

16

Analysis

• It turns out that for these algorithms, all the functions run

in O(logn) time

• We will be showing this is the case in the In-Class exercise

• We will show this by showing that the heights of all the trees

are always logarithmic in the number of nodes in the tree
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In-Class Exercise

• We will show that the depth of our trees are no more than

O(logx) where x is the number of nodes in the tree

• We will show this using proof by induction on, x, the number

of nodes in the tree

• We will consider a tree with x nodes and, using the inductive

hypothesis (and facts about our algs), show that it has a

height of of O(logx)
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The Facts

• Let T be a tree with x nodes that was created by a call to

the Union Algorithm

• Note that T must have been created by merging two trees

T1 and T2

• Let T2 be the tree with the smaller number of nodes

• Then the root of T is the root of T1 and a child of this root

is the root of the tree T2

• Key fact: the number of nodes in T2 is no more than x/2
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In-Class Exercise

To prove: Any tree T with x nodes, created by our algorithms,

has depth no more than logx

• Q1: Show the base case (x = 1)

• Q2: What is the inductive hypothesis?

• Q3: Complete the proof by giving the inductive step. (hint:

note that depth(T) = Max(depth(T1),depth(T2)+1)
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Problem

• Q: O(logn) per operation is not bad but can we do better?

• A: Yes we can actually do much better but it’s going to take

some cleverness (and amortized analysis)
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Shallow Threaded Trees

• One good idea is to just have every object keep a pointer to

the leader of it’s set

• In other words, each set is represented by a tree of depth 1

• Then Make-Set and Find-Set are completely trivial, and they

both take O(1) time

• Q: What about the Union operation?
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Union

• To do a union, we need to set all the leader pointers of one

set to point to the leader of the other set

• To do this, we need a way to visit all the nodes in one of the

sets

• We can do this easily by “threading” a linked list through

each set starting with the sets leaders

• The threads of two sets can be merged by the Union algo-

rithm in constant time

23



The Code

Make-Set(x){

leader(x) = x;

next(x) = NULL;

}

Find-Set(x){

return leader(x);

}
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The Code

Union(x,y){

xRep = Find-Set(x);

yRep = Find-Set(y);

leader(y) = xRep;

while(next(y)!=NULL){

y = next(y);

leader(y) = xRep;

}

next(y) = next(xRep);

next(xRep) = yRep;

}
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Example

Merging two sets stored as threaded trees.

Bold arrows point to leaders; lighter arrows form the threads.

Shaded nodes have a new leader.
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Analysis

• Worst case time of Union is a constant times the size of the

larger set

• So if we merge a one-element set with a n element set, the

run time can be Θ(n)

• In the worst case, it’s easy to see that n operations can take

Θ(n2) time for this alg
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Problem

• The main problem here is that in the worst case, we always

get unlucky and choose to update the leader pointers of the

larger set

• Instead let’s purposefully choose to update the leader point-

ers of the smaller set

• This will require us to keep track of the sizes of all the sets,

but this is not difficult

28

The Code

Make-Weighted-Set(x){

leader(x) = x;

next(x) = NULL;

size(x) = 1;

}
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The Code

Weighted-Union(x,y){

xRep = Find-Set(x);

yRep = Find-Set(y)

if(size(xRep)>size(yRep){

Union(xRep,yRep);

size(xRep) = size(xRep) + size(yRep);

}else{

Union(yRep,xRep);

size(yRep) = size(xRep) + size(yRep);

}

}
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Analysis

• The Weighted-Union algorithm still takes Θ(n) time to merge

two n element sets

• However in an amortized sense, it is more efficient:

• A sequence of m Make-Weighted-Set operations and n Weighted-

Union operations takes O(m+n logn) time in the worst case.
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