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1. Asymptotic Analysis and Recurrence Relations

Is n/2 ∈ o(n)? Prove your answer using definitions of asymptotic notation given in the book
and in class and solve for the values required to show the definitions hold or do not hold.
Solution: n/2 is not o(n). To show that n/2 is o(n), we would need to show that for any
positive constant c > 0, there exists a constant n0 such that 0 ≤ n/2 ≤ cn for all n ≥ n0.
This is equivalent to saying that

n/2 ≤ cn

1/2 ≤ c

But if c > 1/2, then the statement is not true for all c > 0.

Recurrence Relations: Consider the Recurrence T (n) = 4T (n − 1) − 4T (n − 2) + 3n. Write
down the general form of the solution for this recurrence (i.e. don’t solve for the constants).
Solution: The homogeneous part is annihilated by L2−4L+4 which factors into (L−2)(L−2).
The nonhomogeneous part is annihilated by (L− 3). Looking this up in the lookup table gives
us that the general solution is of the form T (n) = c13n + (c2 + c3n)2n.



2. Heaps and Sorting

Prove that you cannot build a Priority Queue in the comparison model (i.e. only comparison
operations ≤, ≥, =, etc. are allowed on the keys) with both of the following properties:

• Extract-Min runs in Θ(1) time

• Build-Heap runs in Θ(n) time

Solution: If such a priority queue existed, we could use if to sort in Θ(n) time as follows.
First we would build a heap out of the elements to be sorted. Next we would run Extract-Min
n times to return the elements in sorted order. This violates the lower-bound of Θ(n log n)
we proved for comparison-based sorting, so such a Priority Queue must not exist.

Prove succinctly that the following algorithm correctly sorts a list of n elements by induction
on n. Don’t forget to include the base case, inductive hypothesis and inductive step.

GoofySort(A,i,j){
if i+1 > j

then return;
Let s be the index of the minimum element in A[i..j];
Exchange A[1] and A[s];
Let b be the index of the maximum element in A[i..j];
Exchange A[j] and A[b];
GoofySort(A,i+1,j-1);

}

Solution: We will do induction on n = j − i + 1 to show that SillySort sorts the array A[i..j].
B.C. if n = 1, there is only one element in the list and thus the list is already sorted. Hence
SillySort is correct in this case by simply returning without doing anything. I.H. SillySort
correctly sorts lists of size less than n. I.S. When faced with a list of size n, SillySort first
moves the minimum element to the front of the list. It then moves the maximum element
to the end. It then calls it self recursively on the remainder of the list. We can assume by
the I.H., that the recursive call correctly sorts the remaining elements. Thus the entire array
A[i..j] is in sorted order when the algorithm exits.



3. Search Trees

Consider a tree with the following properties:

• Each internal node has exactly three children

• The heights of the subtrees rooted at each child differ by at most 1.

What is the maximum height of such a tree containing n nodes?

Hint: Write a recurrence relation for the maximum number of nodes as a function of the
height and then solve for the height. Show your work!

Solution: Let T (h) be the maximum number of nodes in a tree of height h. Then T (h) =
T (h − 1) + 2T (h − 2) + 1. (L2 − L − 2) = (L − 2)(L + 1) annihilates the homogeneous part
and L − 1 annihilates the non-homogeneous part. Thus, the solution is of the form T (h) =
c12h + c2 + c3(−1)h. Let n be the number of nodes in the tree. We know that n ≥ T (h) and so
n ≥ c12h+c2+c3(−1)h. If we let c = c2−c3, we can say that, n ≥ c12h+c. Taking logs of both
sides, we have that log n ≥ h log(2c1)+log c. This implies that h ≤ 1/(log(2c1))(log n− log c).
The right hand side is O(log n). Thus, h is O(log n).



4. Hash Tables and Probability

Assume we hash n items into a hash table with n bins using a good hash function i.e. each
item is hashed to a bin chosen independently and uniformly at random. Give a good upper
bound on the number of empty bins. Solve for the constants in your upper bound i.e. do not
use asymptotic notation.

Hint: Use the fact that 1− x ≤ e−x for all x.

Solution: Let Xi be an indicator random variable which is 1 if the i-th bin is empty and is 0
otherwise. Then note that E(Xi) equals the probability that the i-th bin is empty. This is the
probability that the n items do not fall in bin i. The probability that a single item does not fall
in bin i is exactly 1−1/n. Since the items are all hashed independently, the probability that no
item hashes into bin i is exactly (1−1/n)n. Using the hint, note that (1−1/n)n ≤ (e−1/n)n =
e−1. Let X be a random variable giving the number of empty bins and note that X =

∑n
i=1 Xi.

Using linearity of expectation, we see that E(X) = E(
∑n

i=1 Xi) =
∑n

i=1 E(Xi) ≤ n/e. Thus
the expected expected number of empty bins is at most n/e. This is actually a pretty tight
upper bound as n gets large.



5. Divide and Conquer

Imagine that after graduating from UNM, you start your new job at the exciting investment
banking firm SELLOUT, Inc. The firm if faced with the following problem: they have an
array of the predicted prices of a stock over n days and they want to determine, using this
array, exactly one day to buy the stock and one day to sell the stock in order to maximize
their profit.

The problem can be formally stated as follows. You are given an array A of n numbers. You
want to choose indices 1 ≤ i < j ≤ n such that A[j]−A[i] is maximized over all such indices.
Give an o(n2) algorithm to solve this problem.

Solution: Use Recursion! Recursively find the pair of indices il and jl on the left half of the
array such that il < jj and A[j]− A[i] is maximized over all such pairs. Find a similar pair
ir and jr on the right half of the array. Now find x, the index of the element with smallest
value on the left half and y, the index of the largest element on the right half. Finally, return
max(A[jl] − A[il], A[jr] − A[ir], A[y] − A[x]). The run time of this algorithm is given by
the same recurrence as for merge sort T (n) = 2T (n/2) + n, whose solution is n log n. Note
that we can get an even faster algorithm than this using dynamic programming. Also there is
another O(n log n) solution that makes use of a heap or BST.


