1. In this problem you will use Chernoff bounds to show that for most of the levels of a skip list, the size of the level is very tightly bounded around its expectation.

Chernoff Bounds: Assume you have n independent, indicator random variables $X_1, X_2, ..., X_n$ and let $X = \sum_{i=1}^{n} X_i$ and $\mu = E(X)$. Then Chernoff bounds tell us that for any $0 \leq \delta \leq 1$:

$$\Pr(X \leq (1 - \delta)\mu \text{ or } X \geq (1 + \delta)\mu) \leq 2e^{-\mu \delta^2 / 4}$$

Use Chernoff and Union bounds to show that with probability at least $1 - 1/n$, for all $0 \leq j \leq \log n - \log \log n - 5$, List j in a skip list contains between $n/2^{j+1}$ and $3n/2^{j+1}$ nodes. Let List 0 be the bottom list, List 1 be the next higher up, etc. You may assume that n is sufficiently large, e.g. n is larger than some constant n_0.

Note: Chernoff bounds are more powerful than bounds on Binomial distributions since X need not be binomially distributed (although it can be). The only requirement is that the X_i be independent. Hint: Remember that $e^{-x} \leq 2^{-x}$.

2. Exercise 11.2-1: Suppose we use a hash function h to hash n distinct keys into an array T of length m. Assuming a uniform hash function, what is the expected number of collisions? More precisely, what is the expected cardinality of $\{ \{k, \ell\} : k \neq \ell \text{ and } h(k) = h(\ell)\}$

3. Consider the recurrence $T(n) = 3T(n/4) + \log^2 n$

 (a) Use the Master method to solve this recurrence
Now use annihilators (and a transformation) to solve the recurrence. Show your work. (This is perhaps stating the obvious, but please note that your two bounds should match)

4. Consider the following function:

```c
int f (int n){
    if (n==0) return 3;
    else if (n==1) return 5;
    else{
        int val = 3*f (n-1);
        val = val - 2*f (n-2);
        return val;
    }
}
```

(a) Write a recurrence relation for the value returned by \(f \). Solve the recurrence exactly. (Don't forget to check it)

(b) Write a recurrence relation for the running time of \(f \). Get a tight upperbound (i.e. big-O) on the solution to this recurrence.

5. Problem 7-3 Stooge-Sort

6. Where in a max-heap might the smallest element reside assuming that all elements are distinct?

7. Is an array that is in sorted order a min-heap?

8. Exercise 6.4-2: Argue the correctness of heapsort

9. Exercise 6.5-5: Argue the correctness of heap-increase-key

10. Problem 6-3: Young Tableaus