
CS 561, Lecture 12

Jared Saia

University of New Mexico

Today’s Outline

• P, NP and NP-Hardness

• Reductions

• Approximation Algorithms

1

Efficient Algorithms

• Q: What is a minimum requirement for an algorithm to be

efficient?

• A: A long time ago, theoretical computer scientists decided

that a minimum requirement of any efficient algorithm is that

it runs in polynomial time: O(nc) for some constant c

• People soon recognized that not all problems can be solved

in polynomial time but they had a hard time figuring out

exactly which ones could and which ones couldn’t

2

NP-Hard Problems

• Q: How to determine those problems which can be solved in

polynomial time and those which can not

• Again a long time ago, Steve Cook and Dick Karp and others

defined the class of NP-hard problems

• Most people believe that NP-Hard problems cannot be solved

in polynomial time, even though so far nobody has proven a

super-polynomial lower bound.

• What we do know is that if any NP-Hard problem can be

solved in polynomial time, they all can be solved in polyno-

mial time.

3

Circuit Satisfiability

• Circuit satisfiability is a good example of a problem that

we don’t know how to solve in polynomial time

• In this problem, the input is a boolean circuit: a collection

of and, or, and not gates connected by wires

• We’ll assume there are no loops in the circuit (so no delay

lines or flip-flops)

4

Circuit Satisfiability

• The input to the circuit is a set of m boolean (true/false)

values x1, . . . xm

• The output of the circuit is a single boolean value

• Given specific input values, we can calculate the output in

polynomial time using depth-first search and evaluating the

output of each gate in constant time

5

Circuit Satisfiability

• The circuit satisfiability problem asks, given a circuit, whether

there is an input that makes the circuit output True

• In other words, does the circuit always output false for any

collenction of inputs

• Nobody knows how to solve this problem faster than just

trying all 2m possible inputs to the circuit but this requires

exponential time

• On the other hand nobody has every proven that this is the

best we can do!

6

Example

Circuit Satisfiability

• Circuit satisfiability is a good example of a problem that

we don’t know how to solve in polynomial time

• In this problem, the input is a boolean circuit: a collection

of and, or, and not gates connected by wires

• We’ll assume there are no loops in the circuit (so no delay

lines or flip-flops)

4

Circuit Satisfiability

• The input to the circuit is a set of m boolean (true/false)

values x1, . . . xm

• The output of the circuit is a single boolean value

• Given specific input values, we can calculate the output in

polynomial time using depth-first search and evaluating the

output of each gate in constant time

5

Circuit Satisfiability

• The circuit satisfiability problem asks, given a circuit, whether

there is an input that makes the circuit output True

• In other words, does the circuit always output false for any

collenction of inputs

• Nobody knows how to solve this problem faster than just

trying all 2m possible inputs to the circuit but this requires

exponential time

• On the other hand nobody has every proven that this is the

best we can do!

6

Example

x
y x y∨x

yx y∧ x x

An and gate, an or gate, and a not gate.

x1

x2
x3
x4
x5

A boolean circuit. Inputs enter from the left, and the output

leaves to the right.

7

An and gate, an or gate, and a not gate.

Circuit Satisfiability

• Circuit satisfiability is a good example of a problem that

we don’t know how to solve in polynomial time

• In this problem, the input is a boolean circuit: a collection

of and, or, and not gates connected by wires

• We’ll assume there are no loops in the circuit (so no delay

lines or flip-flops)

4

Circuit Satisfiability

• The input to the circuit is a set of m boolean (true/false)

values x1, . . . xm

• The output of the circuit is a single boolean value

• Given specific input values, we can calculate the output in

polynomial time using depth-first search and evaluating the

output of each gate in constant time

5

Circuit Satisfiability

• The circuit satisfiability problem asks, given a circuit, whether

there is an input that makes the circuit output True

• In other words, does the circuit always output false for any

collenction of inputs

• Nobody knows how to solve this problem faster than just

trying all 2m possible inputs to the circuit but this requires

exponential time

• On the other hand nobody has every proven that this is the

best we can do!

6

Example

x
y x y∨x

yx y∧ x x

An and gate, an or gate, and a not gate.

x1

x2
x3
x4
x5

A boolean circuit. Inputs enter from the left, and the output

leaves to the right.

7

A boolean circuit. Inputs enter from the left, and the output

leaves to the right.

7

Classes of Problems

We can characterize many problems into three classes:

• P is the set of yes/no problems that can be solved in poly-

nomial time. Intuitively P is the set of problems that can be

solved “quickly”

• NP is the set of yes/no problems with the following property:

If the answer is yes, then there is a proof of this fact that

can be checked in polynomial time

• co-NP is the set of yes/no problems with the following prop-

erty: If the answer is no, then there is a proof of this fact

that can be checked in polynomial time

8

NP

• NP is the set of yes/no problems with the following property:

If the answer is yes, then there is a proof of this fact that

can be checked in polynomial time

• Intuitively NP is the set of problems where we can verify a

Yes answer quickly if we have a solution in front of us

• For example, circuit satisfiability is in NP since if the answer

is yes, then any set of m input values that produces the True

output is a proof of this fact (and we can check this proof

in polynomial time)

9

P,NP, and co-NP

• If a problem is in P, then it is also in NP — to verify that

the answer is yes in polynomial time, we can just throw away

the proof and recompute the answer from scratch

• Similarly, any problem in P is also in co-NP

• In this sense, problems in P can only be easier than problems

in NP and co-NP

10

Examples

• The problem: “For a certain circuit and a set of inputs, is

the output True?” is in P (and in NP and co-NP)

• The problem: “Does a certain circuit have an input that

makes the output True?” is in NP

• The problem: “Does a certain circuit always have output

true for any input?” is in co-NP

11

P Examples

Most problems we’ve seen in this class so far are in P including:

• “Does there exist a path of distance ≤ d from u to v in the

graph G?”

• “Does there exist a minimum spanning tree for a graph G

that has cost ≤ c?”

• “Does there exist an alignment of strings s1 and s2 which

has cost ≤ c?”

12

NP Examples

There are also several problems that are in NP (but probably not

in P) including:

• Circuit Satisfiability

• Coloring: “Can we color the vertices of a graph G with c

colors such that every edge has two different colors at its

endpoints (G and c are inputs to the problem)

• Clique: “Is there a clique of size k in a graph G?” (G and k

are inputs to the problem)

• Hamiltonian Path: “Does there exist a path for a graph G

that visits every vertex exactly once?”

13

The $1 Million Question

• The most important question in computer science (and one

of the most important in mathematics) is: “Does P=NP?”

• Nobody knows.

• Intuitively, it seems obvious that P 6=NP; in this class you’ve

seen that some problems can be very difficult to solve, even

though the solutions are obvious once you see them

• But nobody has proven that P6=NP

14

NP and co-NP

• Notice that the definition of NP (and co-NP) is not symmet-

ric.

• Just because we can verify every yes answer quickly doesn’t

mean that we can check no answers quickly

• For example, as far as we know, there is no short proof that

a boolean circuit is not satisfiable

• In other words, we know that Circuit Satisfiability is in NP

but we don’t know if its in co-NP

15

Conjectures

• We conjecture that P 6=NP and that NP 6=co-NP

• Here’s a picture of what we think the world looks like:

Conjectures

• We conjecture that P!=NP and that NP!=co-NP

• Here’s a picture of what we think the world looks like:

P

NPco−NP

16

NP-Hard

• A problem Π is NP-hard if a polynomial-time algorithm for

Π would imply a polynomial-time algorithm for every problem

in NP

• In other words: Π is NP-hard iff If Π can be solved in

polynomial time, then P=NP

• In other words: if we can solve one particular NP-hard prob-

lem quickly, then we can quickly solve any problem whose

solution is quick to check (using the solution to that one

special problem as a subroutine)

• If you tell your boss that a problem is NP-hard, it’s like saying:

“Not only can’t I find an efficient solution to this problem

but neither can all these other very famous people.” (you

could then seek to find an approximation algorithm for your

problem)

17

NP-Complete

• A problem is NP-Easy if it is in NP

• A problem is NP-Complete if it is NP-Hard and NP-Easy

• In other words, a problem is NP-Complete if it is in NP but

is at least as hard as all other problems in NP.

• If anyone finds a polynomial-time algorithm for even one NP-

complete problem, then that would imply a polynomial-time

algorithm for every NP-Complete problem

• Thousands of problems have been shown to be NP-Complete,

so a polynomial-time algorithm for one (i.e. all) of them is

incredibly unlikely

18

Example

P

co−NP

NP−hard

NP
NP−complete

A more detailed picture of what we think the world looks like.

19

16

NP-Hard

• A problem Π is NP-hard if a polynomial-time algorithm for

Π would imply a polynomial-time algorithm for every problem

in NP

• In other words: Π is NP-hard iff If Π can be solved in

polynomial time, then P=NP

• In other words: if we can solve one particular NP-hard prob-

lem quickly, then we can quickly solve any problem whose

solution is quick to check (using the solution to that one

special problem as a subroutine)

• If you tell your boss that a problem is NP-hard, it’s like saying:

“Not only can’t I find an efficient solution to this problem

but neither can all these other very famous people.” (you

could then seek to find an approximation algorithm for your

problem)

17

NP-Complete

• A problem is NP-Easy if it is in NP

• A problem is NP-Complete if it is NP-Hard and NP-Easy

• In other words, a problem is NP-Complete if it is in NP but

is at least as hard as all other problems in NP.

• If anyone finds a polynomial-time algorithm for even one NP-

complete problem, then that would imply a polynomial-time

algorithm for every NP-Complete problem

• Thousands of problems have been shown to be NP-Complete,

so a polynomial-time algorithm for one (i.e. all) of them is

incredibly unlikely

18

Example

Conjectures

• We conjecture that P!=NP and that NP!=co-NP

• Here’s a picture of what we think the world looks like:

P

NPco−NP

16

NP-Hard

• A problem Π is NP-hard if a polynomial-time algorithm for

Π would imply a polynomial-time algorithm for every problem

in NP

• In other words: Π is NP-hard iff If Π can be solved in

polynomial time, then P=NP

• In other words: if we can solve one particular NP-hard prob-

lem quickly, then we can quickly solve any problem whose

solution is quick to check (using the solution to that one

special problem as a subroutine)

• If you tell your boss that a problem is NP-hard, it’s like saying:

“Not only can’t I find an efficient solution to this problem

but neither can all these other very famous people.” (you

could then seek to find an approximation algorithm for your

problem)

17

NP-Complete

• A problem is NP-Easy if it is in NP

• A problem is NP-Complete if it is NP-Hard and NP-Easy

• In other words, a problem is NP-Complete if it is in NP but

is at least as hard as all other problems in NP.

• If anyone finds a polynomial-time algorithm for even one NP-

complete problem, then that would imply a polynomial-time

algorithm for every NP-Complete problem

• Thousands of problems have been shown to be NP-Complete,

so a polynomial-time algorithm for one (i.e. all) of them is

incredibly unlikely

18

Example

P

co−NP

NP−hard

NP
NP−complete

A more detailed picture of what we think the world looks like.

19

A more detailed picture of what we think the world looks like.

19

Proving NP-Hardness

• In 1971, Steve Cook proved the following theorem: Circuit

Satisfiability is NP-Hard

• Thus, one way to show that a problem A is NP-Hard is to

show that if you can solve it in polynomial time, then you can

solve the Circuit Satisfiability problem in polynomial time.

• This is called a reduction. We say that we reduce Circuit

Satisfiability to problem A

• This implies that problem A is “as difficult as” Circuit Sat-

isfiability.

20

SAT

• Consider the formula satisfiability problem (aka SAT)

• The input to SAT is a boolean formula like

(a ∨ b ∨ c ∨ d̄)⇔ ((b ∧ c̄) ∨ (ā⇒ d) ∨ (c 6= a ∧ b)),

• The question is whether it is possible to assign boolean values

to the variables a, b, c, . . . so that the formula evaluates to

TRUE

• To show that SAT is NP-Hard, we need to show that we can

use a solution to SAT to solve Circuit Satisfiability

21

The Reduction

• Given a boolean circuit, we can transform it into a boolean

formula by creating new output variables for each gate and

then just writing down the list of gates separated by AND

• This simple algorithm is the reduction

• For example, we can transform the example ciruit into a

formula as follows:

22

Example

Proving NP-Hardness

• In 1971, Steve Cook proved the following theorem: Circuit

Satisfiability is NP-Hard

• Thus, one way to show that a problem A is NP-Hard is to

show that if you can solve it in polynomial time, then you can

solve the Circuit Satisfiability problem in polynomial time.

• This is called a reduction. We say that we reduce Circuit

Satisfiability to problem A

• This implies that problem A is “as difficult as” Circuit Sat-

isfiability.

20

SAT

• Consider the formula satisfiability problem (aka SAT)

• The input to SAT is a boolean formula like

(a ∨ b ∨ c ∨ d̄) ⇔ ((b ∧ c̄) ∨ (ā ⇒ d) ∨ (c %= a ∧ b)),

• The question is whether it is possible to assign boolean values

to the variables a, b, c, . . . so that the formula evaluates to

TRUE

• To show that SAT is NP-Hard, we need to show that we can

use a solution to SAT to solve Circuit Satisfiability

21

The Reduction

• Given a boolean circuit, we can transform it into a boolean

formula by creating new output variables for each gate and

then just writing down the list of gates separated by AND

• This simple algorithm is the reduction

• For example, we can transform the example ciruit into a

formula as follows:

22

Example

x1

x2
x3
x4
x5

y1

y2
y3

y4

y5

y6

y7
y8

(y1 = x1∧x4)∧ (y2 = x4)∧ (y3 = x3∧ y2)∧ (y4 = y1∨x2)∧

(y5 = x2)∧(y6 = x5)∧(y7 = y3∨y5)∧(y8 = y4∧y7∧y6)∧y8

A boolean circuit with gate variables added, and an equivalent

boolean formula.

23

(y1 = x1∧x4)∧ (y2 = x4)∧ (y3 = x3∧ y2)∧ (y4 = y1∨x2)∧
(y5 = x2)∧(y6 = x5)∧(y7 = y3∨y5)∧(y8 = y4∧y7∧y6)∧y8

A boolean circuit with gate variables added, and an equivalent

boolean formula.

23

Reduction Picture

boolean circuit
O(n)
−−−→ boolean formulawww� SAT

True or False
trivial
←−−− True or False

24

Reduction

• The original circuit is satisifiable iff the resulting formula is

satisfiable

• We can transform any boolean circuit into a formula in linear

time using DFS and the size of the resulting formula is only

a constant factor larger than the size of the circuit

• Thus we’ve shown that if we had a polynomial-time algorithm

for SAT, then we’d have a polynomial-time algorithm for

Circuit Satisfiability (and this would imply that P=NP)

• This means that SAT is NP-Hard

25

Showing NP-Completeness

• We’ve shown that SAT is NP-Hard, to show that it is NP-

Complete, we now must also show that it is in NP

• In other words, we must show that if the given formula is

satisfiable, then there is a proof of this fact that can be

checked in polynomial time

• To prove that a boolean formula is satisfiable, we only have

to specify an assignment to the variables that makes the

formula true (this is the “proof” that the formula is true)

• Given this assignment, we can check it in linear time just by

reading the formula from left to right, evaluating as we go

• So we’ve shown that SAT is NP-Hard and that SAT is in NP,

thus SAT is NP-Complete

26

Take Away

• In general to show a problem is NP-Complete, we first show

that it is in NP and then show that it is NP-Hard

• To show that a problem is in NP, we just show that when

the problem has a “yes” answer, there is a proof of this fact

that can be checked in polynomial time (this is usually easy)

• To show that a problem is NP-Hard, we show that if we

could solve it in polynomial time, then we could solve some

other NP-Hard problem in polynomial time (this is called a

reduction)

27

3-SAT

• A boolean formula is in conjunctive normal form (CNF) if it

is a conjunction (and) of several clauses, each of which is

the disjunction (or) or several literals, each of which is either

a variable or its negation. For example:

clause︷ ︸︸ ︷
(a ∨ b ∨ c ∨ d) ∧ (b ∨ c̄ ∨ d̄) ∧ (ā ∨ c ∨ d) ∧ (a ∨ b̄)

• A 3CNF formula is a CNF formula with exactly three literals

per clause

• The 3-SAT problem is just: “Is there any assignment of

variables to a 3CNF formula that makes the formula evaluate

to true?”

28

3-SAT

• 3-SAT is just a restricted version of SAT

• Surprisingly, 3-SAT also turns out to be NP-Complete (proof

omitted for now)

• 3-SAT is very useful in proving NP-Hardness results for other

problems, we’ll see how it can be used to show that CLIQUE

is NP-Hard

29

CLIQUE

• The last problem we’ll consider in this lecture is CLIQUE

• The problem CLIQUE asks “Is there a clique of size k in a

graph G?”

• Example graph with clique of size 4:

3-SAT

• A boolean formula is in conjunctive normal form (CNF) if it

is a conjunction (and) of several clauses, each of which is

the disjunction (or) or several literals, each of which is either

a variable or its negation. For example:

clause︷ ︸︸ ︷
(a ∨ b ∨ c ∨ d) ∧ (b ∨ c̄ ∨ d̄) ∧ (ā ∨ c ∨ d) ∧ (a ∨ b̄)

• A 3CNF formula is a CNF formula with exactly three literals

per clause

• The 3-SAT problem is just: “Is there any assignment of

variables to a 3CNF formula that makes the formula evaluate

to true?”

28

3-SAT

• 3-SAT is just a restricted version of SAT

• Surprisingly, 3-SAT also turns out to be NP-Complete (proof

omitted for now)

• 3-SAT is very useful in proving NP-Hardness results for other

problems, we’ll see how it can be used to show that CLIQUE

is NP-Hard

29

CLIQUE

• The last problem we’ll consider in this lecture is CLIQUE

• The problem CLIQUE asks “Is there a clique of size k in a

graph G?”

• Example graph with clique of size 4:

• We’ll show that Clique is NP-Hard using a reduction from

3-SAT. (the proof that Clique is in NP is left as an exercise)

30

The Reduction

• Given a 3-CNF formula F , we construct a graph G as follows.

• The graph has one node for each instance of each literal in

the formula

• Two nodes are connected by an edge is: (1) they correspond

to literals in different clauses and (2) those literals do not

contradict each other

31

• We’ll show that Clique is NP-Hard using a reduction from

3-SAT. (the proof that Clique is in NP is left as an exercise)

30

The Reduction

• Given a 3-CNF formula F , we construct a graph G as follows.

• The graph has one node for each instance of each literal in

the formula

• Two nodes are connected by an edge if: (1) they correspond

to literals in different clauses and (2) those literals do not

contradict each other

31

Reduction Example

• Let F be the formula: (a∨b∨c)∧(b∨ c̄∨d̄)∧(ā∨c∨d)∧(a∨ b̄∨d̄)

• This formula is transformed into the following graph:

Reduction Example

• Let F be the formula: (a∨b∨c)∧(b∨ c̄∨d̄)∧(ā∨c∨d)∧(a∨ b̄∨d̄)

• This formula is transformed into the following graph:

a b c

a

b

d

b

c

d

a dc

(look for the edges that aren’t in the graph)

32

Reduction

• Let F have k clauses. Then G has a clique of size k iff F has

a satisfying assignment. The proof:

• k-clique =⇒ satisfying assignment: If the graph has

a clique of k vertices, then each vertex must come from a

different clause. To get the satisfying assignment, we declare

that each literal in the clique is true. Since we only connect

non-contradictory literals with edges, this declaration assigns

a consistent value to several of the variables. There may be

variables that have no literal in the clique; we can set these

to any value we like.

• satisfying assignment =⇒ k-clique: If we have a satisfy-

ing assignment, then we can choose one literal in each clause

that is true. Those literals form a k-clique in the graph.

33

Reduction Picture

3CNF formula with k clauses
O(n)
−−−→ graph with 3k nodes

!
!
!
" Clique of size k?

True or False
trivial
←−−− True or False

34

In-Class Exercise

Consider the formula: (a ∨ b) ∧ (b ∨ c̄) ∧ (c ∨ b̄)

• Q1: Transform this formula into a graph, G, using the re-

duction just given.

• Q2: What is the maximum clique size in G? Give the vertices

in this maximum clique.

35

(look for the edges that aren’t in the graph)

32

Reduction

• Let F have k clauses. Then G has a clique of size k iff F has

a satisfying assignment. The proof:

• k-clique =⇒ satisfying assignment: If the graph has

a clique of k vertices, then each vertex must come from a

different clause. To get the satisfying assignment, we declare

that each literal in the clique is true. Since we only connect

non-contradictory literals with edges, this declaration assigns

a consistent value to several of the variables. There may be

variables that have no literal in the clique; we can set these

to any value we like.

• satisfying assignment =⇒ k-clique: If we have a satisfy-

ing assignment, then we can choose one literal in each clause

that is true. Those literals form a k-clique in the graph.

33

Reduction Picture

3CNF formula with k clauses
O(n)
−−−→ graph with 3k nodeswww� Clique of size k?

True or False
trivial
←−−− True or False

34

In-Class Exercise

Consider the formula: (a ∨ b) ∧ (b ∨ c̄) ∧ (c ∨ b̄)

• Q1: Transform this formula into a graph, G, using the re-

duction just given.

• Q2: What is the maximum clique size in G? Give the vertices

in this maximum clique.

35

Independent Set

• Independent Set is the following problem: “Does there exist

a set of k vertices in a graph G with no edges between them?”

• In the hw, you’ll show that independent set is NP-Hard by a

reduction from CLIQUE

• Thus we can now use Independent Set to show that other

problems are NP-Hard

36

Vertex Cover

• A vertex cover of a graph is a set of vertices that touches

every edge in the graph

• The problem Vertex Cover is: “Does there exist a vertex

cover of size k in a graph G?”

• We can prove this problem is NP-Hard by an easy reduction

from Independent Set

37

Key Observation

• Key Observation: If I is an independent set in a graph G =

(V, E), then V − I is a vertex cover.

• Thus, there is an independent set of size k iff there is a vertex

cover of size |V | − k.

• For the reduction, we want to show that a polynomial time

algorithm for Vertex Cover can give a polynomial time algo-

rithm for Independent Set

38

The Reduction

• We are given a graph G = (V, E) and a value k and we must

determine if there is an independent set of size k in G.

• To do this, we ask if there is a vertex cover of size |V | − k in

G.

• If so then we return that there is an independent set of size

k in G

• If not, we return that there is not an independent set of size

k in G

39

The Reduction

graph G = (V, E), k
trivial
−−−→ graph G = (V, E), |V | − kwww� VertexCover

True or False
O(1)
←−−− True or False

40

Graph Coloring

• A c-coloring of a graph G is a map C : V → {1, 2, . . . , c} that

assigns one of c “colors” to each vertex so that every edge

has two different colors at its endpoints

• The graph coloring problem is: “Does there exist a c-coloring

for the graph G?”

• Even when c = 3, this problem is hard. We call this problem

3Colorable i.e. “Does there exist a 3-coloring for the graph

G?”

41

3Colorable

• To show that 3Colorable is NP-hard, we will reduce from

3Sat

• This means that we want to show that a polynomial time al-

gorithm for 3Colorable can give a polynomial time algorithm

for 3Sat

• Recall that the 3-SAT problem is just: “Is there any assign-

ment of variables to a 3CNF formula that makes the formula

evaluate to true?”

• And a 3CNF formula is just a conjunct of a bunch of clauses,

each of which contains exactly 3 variables e.g.

clause︷ ︸︸ ︷
(a ∨ b ∨ c) ∧ (b ∨ c̄ ∨ d̄) ∧ (ā ∨ c ∨ d) ∧ (a ∨ b̄ ∨ d)

42

Reduction

• We are given a 3-CNF formula, F , and we must determine

if it has a satisfying assignment

• To do this, we produce a graph as follows

• The graph contains one truth gadget, one variable gadget

for each variable in the formula, and one clause gadget for

each clause in the formula

43

The Truth Gadget

• The truth gadget is just a triangle with three vertices T , F

and X, which intuitively stand for True, False, and other

• Since these vertices are all connected, they must have differ-

ent colors in any 3-coloring

• For the sake of convenience, we will name those colors True,

False, and Other

• Thus when we say a node is colored “True”, we just mean

that it’s colored the same color as the node T

3Colorable

• To show that 3Colorable is NP-hard, we will reduce from
3Sat

• This means that we want to show that a polynomial time al-
gorithm for 3Colorable can give a polynomial time algorithm
for 3Sat

• Recall that the 3-SAT problem is just: “Is there any assign-
ment of variables to a 3CNF formula that makes the formula
evaluate to true?”

• And a 3CNF formula is just a conjunct of a bunch of clauses,
each of which contains exactly 3 variables e.g.

clause︷ ︸︸ ︷
(a ∨ b ∨ c) ∧ (b ∨ c̄ ∨ d̄) ∧ (ā ∨ c ∨ d) ∧ (a ∨ b̄ ∨ d)

12

Reduction

• We are given a 3-CNF formula, F , and we must determine
if it has a satisfying assignment

• To do this, we produce a graph as follows
• The graph contains one truth gadget, one variable gadget

for each variable in the formula, and one clause gadget for
each clause in the formula

13

The Truth Gadget

• The truth gadget is just a triangle with three vertices T , F

and X, which intuitively stand for True, False, and other

• Since these vertices are all connected, they must have differ-
ent colors in any 3-coloring

• For the sake of convenience, we will name those colors True,
False, and Other

• Thus when we say a node is colored “True”, we just mean
that it’s colored the same color as the node T

X

T F

14

The Variable Gadgets

• The variable gadget for a variable a is also a triangle joining
two new nodes labeled a and a to node X in the truth gadget

• Node a must be colored either “True” or “False”, and so
node a must be colored either “False” or “True”, respec-
tively.

X

a a

• The variable gadget ensures that each of the literals is colored
either “True” or “False”

15

44

The Variable Gadgets

• The variable gadget for a variable a is also a triangle joining

two new nodes labeled a and a to node X in the truth gadget

• Node a must be colored either “True” or “False”, and so

node a must be colored either “False” or “True”, respec-

tively.

3Colorable

• To show that 3Colorable is NP-hard, we will reduce from
3Sat

• This means that we want to show that a polynomial time al-
gorithm for 3Colorable can give a polynomial time algorithm
for 3Sat

• Recall that the 3-SAT problem is just: “Is there any assign-
ment of variables to a 3CNF formula that makes the formula
evaluate to true?”

• And a 3CNF formula is just a conjunct of a bunch of clauses,
each of which contains exactly 3 variables e.g.

clause︷ ︸︸ ︷
(a ∨ b ∨ c) ∧ (b ∨ c̄ ∨ d̄) ∧ (ā ∨ c ∨ d) ∧ (a ∨ b̄ ∨ d)

12

Reduction

• We are given a 3-CNF formula, F , and we must determine
if it has a satisfying assignment

• To do this, we produce a graph as follows
• The graph contains one truth gadget, one variable gadget

for each variable in the formula, and one clause gadget for
each clause in the formula

13

The Truth Gadget

• The truth gadget is just a triangle with three vertices T , F

and X, which intuitively stand for True, False, and other

• Since these vertices are all connected, they must have differ-
ent colors in any 3-coloring

• For the sake of convenience, we will name those colors True,
False, and Other

• Thus when we say a node is colored “True”, we just mean
that it’s colored the same color as the node T

X

T F

14

The Variable Gadgets

• The variable gadget for a variable a is also a triangle joining
two new nodes labeled a and a to node X in the truth gadget

• Node a must be colored either “True” or “False”, and so
node a must be colored either “False” or “True”, respec-
tively.

X

a a

• The variable gadget ensures that each of the literals is colored
either “True” or “False”

15

• The variable gadget ensures that each of the literals is colored

either “True” or “False”

45

The Clause Gadgets

• Each clause gadget joins three literal nodes to node T in the

truth gadget using five new unlabelled nodes and ten edges

(as in the figure)

• This clause gadget ensures that at least one of the three

literal nodes in each clause is colored “True”

The Clause Gadgets

• Each clause gadget joins three literal nodes to node T in the
truth gadget using five new unlabelled nodes and ten edges
(as in the figure)

• This clause gadget ensures that at least one of the three
literal nodes in each clause is colored “True”

a

b

c

T

16

Example

Consider the formula (a∨ b∨ c)∧ (b∨ c̄∨ d̄)∧ (ā∨ c∨d)∧ (a∨ b̄∨ d̄).
Following is the graph created by the reduction:

d

X

ca b

T

a b c d

F

17

Example

• Note that the 3-coloring of this example graph corresponds
to a satisfying assignment of the formula

• Namely, a = c = True, b = d = False.
• Note that the final graph contains only one node T , only one

node F , only one node ā for each variable a and so on

18

Correctness

• The proof of correctness for this reduction is direct
• If the graph is 3-colorable, then we can extract a satisfying

assignment from any 3-coloring, since at least one of the
three literal nodes in every clause gadget is colored “True”

• Conversely, if the formula is satisfiable, then we can color
the graph according to any satisfying assignment

19

46

Example

Consider the formula (a∨ b∨ c)∧ (b∨ c̄∨ d̄)∧ (ā∨ c∨d)∧ (a∨ b̄∨ d̄).

Following is the graph created by the reduction:

The Clause Gadgets

• Each clause gadget joins three literal nodes to node T in the
truth gadget using five new unlabelled nodes and ten edges
(as in the figure)

• This clause gadget ensures that at least one of the three
literal nodes in each clause is colored “True”

a

b

c

T

16

Example

Consider the formula (a∨ b∨ c)∧ (b∨ c̄∨ d̄)∧ (ā∨ c∨d)∧ (a∨ b̄∨ d̄).
Following is the graph created by the reduction:

d

X

ca b

T

a b c d

F

17

Example

• Note that the 3-coloring of this example graph corresponds
to a satisfying assignment of the formula

• Namely, a = c = True, b = d = False.
• Note that the final graph contains only one node T , only one

node F , only one node ā for each variable a and so on

18

Correctness

• The proof of correctness for this reduction is direct
• If the graph is 3-colorable, then we can extract a satisfying

assignment from any 3-coloring, since at least one of the
three literal nodes in every clause gadget is colored “True”

• Conversely, if the formula is satisfiable, then we can color
the graph according to any satisfying assignment

19

47

Example

• Note that the 3-coloring of this example graph corresponds

to a satisfying assignment of the formula

• Namely, a = c = True, b = d = False.

• Note that the final graph contains only one node T , only one

node F , only one node ā for each variable a and so on

48

Correctness

• The proof of correctness for this reduction is direct

• If the graph is 3-colorable, then we can extract a satisfying

assignment from any 3-coloring, since at least one of the

three literal nodes in every clause gadget is colored “True”

• Conversely, if the formula is satisfiable, then we can color

the graph according to any satisfying assignment

49

Reduction Picture

3CNF formula
O(n)
−−−→ graphwww� 3Colorable

True or False
trivial
←−−− True or False

50

Wrap Up

• We’ve just shown that if 3Colorable can be solved in poly-

nomial time then 3-SAT can be solved in polynomial time

• This shows that 3Colorable is NP-Hard

• To show that 3Colorable is in NP, we just need to note that

we can easily verify that a graph has been correctly 3-colored

in linear time: just compare the endpoints of every edge

• Thus, 3Coloring is NP-Complete.

• This implies that the more general graph coloring problem is

also NP-Complete

51

In-Class Exercise

Consider the problem 4Colorable: “Does there exist a 4-coloring

for a graph G?”

• Q1: Show this problem is in NP by showing that there exists

an efficiently verifiable proof of the fact that a graph is 4

colorable.

• Q2: Show the problem is NP-Hard by a reduction from the

problem 3Colorable. In particular, show the following:

– Given a graph G, you can create a graph G′ such that G′

is 4-colorable iff G is 3-colorable.

– Creating G′ from G takes polynomial time

Note: You’ve now shown that 4Colorable is NP-Complete!

52

Hamiltonian Cycle

• A Hamiltonian Cycle in a graph is a cycle that visits every

vertex exactly once (note that this is very different from an

Eulerian cycle which visits every edge exactly once)

• The Hamiltonian Cycle problem is to determine if a given

graph G has a Hamiltonian Cycle

• We will show that this problem is NP-Hard by a reduction

from the vertex cover problem.

53

The Reduction

• To do the reduction, we need to show that we can solve

Vertex Cover in polynomial time if we have a polynomial

time solution to Hamiltonian Cycle.

• Given a graph G and an integer k, we will create another

graph G′ such that G′ has a Hamiltonian cycle iff G has a

vertex cover of size k

• As for the last reduction, our transformation will consist of

putting together several “gadgets”

54

Edge Gadget and Cover Vertices

• For each edge (u, v) in G, we have an edge gadget in G′

consisting of twelve vertices and fourteen edges, as shown

below

The Reduction

• To do the reduction, we need to show that we can solve
Vertex Cover in polynomial time if we have a polynomial
time solution to Hamiltonian Cycle.

• Given a graph G and an integer k, we will create another
graph G′ such that G′ has a Hamiltonian cycle iff G has a
vertex cover of size k

• As for the last reduction, our transformation will consist of
putting together several “gadgets”

24

Edge Gadget and Cover Vertices

• For each edge (u, v) in G, we have an edge gadget in G′
consisting of twelve vertices and fourteen edges, as shown
below

(u,v,1) (u,v,6)(u,v,2) (u,v,3) (u,v,4) (u,v,5)

(v,u,1) (v,u,2) (v,u,3) (v,u,4) (v,u,5) (v,u,6)

An edge gadget for (u, v) and the only possible Hamiltonian paths
through it.

25

Edge Gadget

• The four corner vertices (u, v,1), (u, v,6), (v, u,1), and (v, u,6)
each have an edge leaving the gadget

• A Hamiltonian cycle can only pass through an edge gadget
in one of the three ways shown in the figure

• These paths through the edge gadget will correspond to one
or both of the vertices u and v being in the vertex cover.

26

Cover Vertices

• G′ also contains k cover vertices, simply numbered 1 through
k

27

The Reduction

• To do the reduction, we need to show that we can solve
Vertex Cover in polynomial time if we have a polynomial
time solution to Hamiltonian Cycle.

• Given a graph G and an integer k, we will create another
graph G′ such that G′ has a Hamiltonian cycle iff G has a
vertex cover of size k

• As for the last reduction, our transformation will consist of
putting together several “gadgets”

24

Edge Gadget and Cover Vertices

• For each edge (u, v) in G, we have an edge gadget in G′
consisting of twelve vertices and fourteen edges, as shown
below

(u,v,1) (u,v,6)(u,v,2) (u,v,3) (u,v,4) (u,v,5)

(v,u,1) (v,u,2) (v,u,3) (v,u,4) (v,u,5) (v,u,6)

An edge gadget for (u, v) and the only possible Hamiltonian paths
through it.

25

Edge Gadget

• The four corner vertices (u, v,1), (u, v,6), (v, u,1), and (v, u,6)
each have an edge leaving the gadget

• A Hamiltonian cycle can only pass through an edge gadget
in one of the three ways shown in the figure

• These paths through the edge gadget will correspond to one
or both of the vertices u and v being in the vertex cover.

26

Cover Vertices

• G′ also contains k cover vertices, simply numbered 1 through
k

27

An edge gadget for (u, v) and the only possible Hamiltonian paths

through it.

55

Edge Gadget

• The four corner vertices (u, v, 1), (u, v, 6), (v, u, 1), and (v, u, 6)

each have an edge leaving the gadget

• A Hamiltonian cycle can only pass through an edge gadget

in one of the three ways shown in the figure

• These paths through the edge gadget will correspond to one

or both of the vertices u and v being in the vertex cover.

56

Cover Vertices

• G′ also contains k cover vertices, simply numbered 1 through

k

57

Vertex Chains

• For each vertex u in G, we string together all the edge gad-

gets for edges (u, v) into a single vertex chain and then con-

nect the ends of the chain to all the cover vertices

• Specifically, suppose u has d neighbors v1, v2, . . . , vd. Then G′

has the following edges:

– d − 1 edges between (u, vi, 6) and (u, vi+1, 1) (for all i

between 1 and d− 1)

– k edges between the cover vertices and (u, v1, 1)

– k edges between the cover vertices and (u, vd, 6)

58

The Reduction

• It’s not hard to prove that if {v1, v2, . . . , vk} is a vertex cover

of G, then G′ has a Hamiltonian cycle

• To get this Hamiltonian cycle, we start at cover vertex 1,

traverse through the vertex chain for v1, then visit cover

vertex 2, then traverse the vertex chain for v2 and so forth,

until we eventually return to cover vertex 1

• Conversely, one can prove that any Hamiltonian cycle in G′

alternates between cover vertices and vertex chains, and that

the vertex chains correspond to the k vertices in a vertex

cover of G

Thus, G has a vertex cover of size k iff G′ has a Hamiltonian

cycle

59

The Reduction

• The transformation from G to G′ takes at most O(|V |2) time,

so the Hamiltonian cycle problem is NP-Hard

• Moreover we can easily verify a Hamiltonian cycle in linear

time, thus Hamiltonian cycle is also in NP

• Thus Hamiltonian Cycle is NP-Complete

60

Example

Vertex Chains

• For each vertex u in G, we string together all the edge gad-
gets for edges (u, v) into a single vertex chain and then con-
nect the ends of the chain to all the cover vertices

• Specifically, suppose u has d neighbors v1, v2, . . . , vd. Then G′
has the following edges:
– d − 1 edges between (u, vi,6) and (u, vi+1,1) (for all i

between 1 and d − 1)
– k edges between the cover vertices and (u, v1,1)
– k edges between the cover vertices and (u, vd,6)

28

The Reduction

• It’s not hard to prove that if {v1, v2, . . . , vk} is a vertex cover
of G, then G′ has a Hamiltonian cycle

• To get this Hamiltonian cycle, we start at cover vertex 1,
traverse through the vertex chain for v1, then visit cover
vertex 2, then traverse the vertex chain for v2 and so forth,
until we eventually return to cover vertex 1

• Conversely, one can prove that any Hamiltonian cycle in G′
alternates between cover vertices and vertex chains, and that
the vertex chains correspond to the k vertices in a vertex
cover of G

Thus, G has a vertex cover of size k iff G′ has a Hamiltonian
cycle

29

The Reduction

• The transformation from G to G′ takes at most O(|V |2) time,
so the Hamiltonian cycle problem is NP-Hard

• Moreover we can easily verify a Hamiltonian cycle in linear
time, thus Hamiltonian cycle is also in NP

• Thus Hamiltonian Cycle is NP-Complete

30

Example

1

2

u v

w x

(v,x)

(x,v)

(u,v)

(v,u)

(u,w)

(w,u)

(v,w)

(w,v)

(x,w)

(w,x)

The original graph G with vertex cover {v, w}, and the transformed graph G′
with a corresponding Hamiltonian cycle (bold edges).

Vertex chains are colored to match their corresponding vertices.

31

The original graph G with vertex cover {v, w}, and the transformed graph G′

with a corresponding Hamiltonian cycle (bold edges).
Vertex chains are colored to match their corresponding vertices.

61

The Reduction

graph G = (V, E), k
O(|V |2)
−−−→ graph G′www� Hamiltonian Cycle

True or False
O(1)
←−−− True or False

62

Traveling Sales Person

• A problem closely related to Hamiltonian cycles is the famous

Traveling Salesperson Problem(TSP)

• The TSP problem is: “Given a weighted graph G, find the

shortest cycle that visits every vertex.

• Finding the shortest cycle is obviously harder than deter-

mining if a cycle exists at all, so since Hamiltonian Path is

NP-hard, TSP is also NP-hard!

63

NP-Hard Games

• In 1999, Richard Kaye proved that the solitaire game Minesweeper

is NP-Hard, using a reduction from Circuit Satifiability.

• Also in the last few years, Eric Demaine, et. al., proved that

the game Tetris is NP-Hard

64

Challenge Problem

• Consider the optimization version of, say, the graph coloring

problem: “Given a graph G, what is the smallest number

of colors needed to color the graph?” (Note that unlike the

decision version of this problem, this is not a yes/no question)

• Show that the optimization version of graph coloring is also

NP-Hard by a reduction from the decision version of graph

coloring.

• Is the optimization version of graph coloring also NP-Complete?

65

Challenge Problem

• Consider the problem 4Sat which is: “Is there any assign-

ment of variables to a 4CNF formula that makes the formula

evaluate to true?”

• Is this problem NP-Hard? If so, give a reduction from 3Sat

that shows this. If not, give a polynomial time algorithm

which solves it.

66

Challenge Problem

• Consider the following problem: “Does there exist a clique

of size 5 in some input graph G?”

• Is this problem NP-Hard? If so, prove it by giving a reduction

from some known NP-Hard problem. If not, give a polynomial

time algorithm which solves it.

67

Vertex Cover

• A vertex cover of a graph is a set of vertices that touches

every edge in the graph

• The decision version of Vertex Cover is: “Does there exist

a vertex cover of size k in a graph G?”.

• We’ve proven this problem is NP-Hard by an easy reduction

from Independent Set

• The optimization version of Vertex Cover is: “What is the

minimum size vertex cover of a graph G?”

• We can prove this problem is NP-Hard by a reduction from

the decision version of Vertex Cover (left as an exercise).

68

Approximating Vertex Cover

• Even though the optimization version of Vertex Cover is NP-

Hard, it’s possible to approximate the answer efficiently

• In particular, in polynomial time, we can find a vertex cover

which is no more than 2 times as large as the minimal vertex

cover

69

Approximation Algorithm

• The approximation algorithm does the following until G has

no more edges:

• It chooses an arbitrary edge (u, v) in G and includes both u

and v in the cover

• It then removes from G all edges which are incident to either

u or v

70

Approximation Algorithm

Approx-Vertex-Cover(G){

C = {};

E’ = Edges of G;

while(E’ is not empty){

let (u,v) be an arbitrary edge in E’;

add both u and v to C;

remove from E’ every edge incident to u or v;

}

return C;

}

71

Analysis

• If we implement the graph with adjacency lists, each edge

need be touched at most once

• Hence the run time of the algorithm will be O(|V | + |E|),

which is polynomial time

• First, note that this algorithm does in fact return a vertex

cover since it ensures that every edge in G is incident to some

vertex in C

• Q: Is the vertex cover actually no more than twice the optimal

size?

72

Analysis

• Let A be the set of edges which are chosen in the first line

of the while loop

• Note that no two edges of A share an endpoint

• Thus, any vertex cover must contain at least one endpoint

of each edge in A

• Thus if C∗ is an optimal cover then we can say that |C∗| ≥ |A|
• Further, we know that |C| = 2|A|
• This implies that |C| ≤ 2|C ∗ |

Which means that the vertex cover found by the algorithm is no

more than twice the size of an optimal vertex cover.

73

TSP

• An optimization version of the TSP problem is: “Given a

weighted graph G, what is the shortest Hamiltonian Cycle of

G?”

• This problem is NP-Hard by a reduction from Hamiltonian

Cycle

• However, there is a 2-approximation algorithm for this prob-

lem if the edge weights obey the triangle inequality

74

Triangle Inequality

• In many practical problems, it’s reasonable to make the as-

sumption that the weights, c, of the edges obey the triangle

inequality

• The triangle inequality says that for all vertices u, v, w ∈ V :

c(u, w) ≤ c(u, v) + c(v, w)

• In other words, the cheapest way to get from u to w is always

to just take the edge (u, w)

• In the real world, this is usually a pretty natural assumption.

For example it holds if the vertices are points in a plane

and the cost of traveling between two vertices is just the

euclidean distance between them.

75

Approximation Algorithm

• Given a weighted graph G, the algorithm first computes a

MST for G, T , and then arbitrarily selects a root node r of

T .

• It then lets L be the list of the vertices visited in a depth

first traversal of T starting at r.

• Finally, it returns the Hamiltonian Cycle, H, that visits the

vertices in the order L.

76

Approximation Algorithm

Approx-TSP(G){

T = MST(G);

L = the list of vertices visited in a depth first traversal

of T, starting at some arbitrary node in T;

H = the Hamiltonian Cycle that visits the vertices in the

order L;

return H;

}

77

Example Run

Triangle Inequality

• In many practical problems, it’s reasonable to make the as-

sumption that the weights, c, of the edges obey the triangle

inequality

• The triangle inequality says that for all vertices u, v, w ∈ V :

c(u, w) ≤ c(u, v) + c(v, w)

• In other words, the cheapest way to get from u to w is always

to just take the edge (u, w)

• In the real world, this is usually a pretty natural assumption.

For example it holds if the vertices are points in a plane

and the cost of traveling between two vertices is just the

euclidean distance between them.

24

Approximation Algorithm

• Given a weighted graph G, the algorithm first computes a

MST for G, T , and then arbitrarily selects a root node r of

T .

• It then lets L be the list of the vertices visited in a depth

first traversal of T starting at r.

• Finally, it returns the Hamiltonian Cycle, H, that visits the

vertices in the order L.

25

Approximation Algorithm

Approx-TSP(G){

T = MST(G);

L = the list of vertices visited in a depth first traversal

of T, starting at some arbitrary node in T;

H = the Hamiltonian Cycle that visits the vertices in the

order L;

return H;

}

26

Example Run

a d

b f

c
h

e
g

a d

b f

c
h

e
g

a d

b f

c
h

e
g

a d

b f

c
h

e
g

The top left figure shows the graph G (edge weights are just

the Euclidean distances between vertices); the top right figure

shows the MST T . The bottom left figure shows the depth

first walk on T , W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a); the bottom

right figure shows the Hamiltonian cycle H obtained by deleting

repeat visits from W , H = (a, b, c, h, d, e, f, g).

27

The top left figure shows the graph G (edge weights are just

the Euclidean distances between vertices); the top right figure

shows the MST T . The bottom left figure shows the depth

first walk on T , W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a); the bottom

right figure shows the Hamiltonian cycle H obtained by deleting

repeat visits from W , H = (a, b, c, h, d, e, f, g).

78

Analysis

• The first step of the algorithm takes O(|E|+ |V | log |V |) (if

we use Prim’s algorithm)

• The second step is O(|V |)
• The third step is O(|V |).

• Hence the run time of the entire algorithm is polynomial

79

Analysis

An important fact about this algorithm is that: the cost of the

MST is less than the cost of the shortest Hamiltonian cycle.

• To see this, let T be the MST and let H∗ be the shortest

Hamiltonian cycle.

• Note that if we remove one edge from H∗, we have a span-

ning tree, T ′

• Finally, note that w(H∗) ≥ w(T ′) ≥ w(T)

• Hence w(H∗) ≥ w(T)

80

Analysis

• Now let W be a depth first walk of T which traverses each

edge exactly twice (similar to what you did in the hw)

• In our example, W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)

• Note that c(W) = 2c(T)

• This implies that c(W) ≤ 2c(H∗)

81

Analysis

• Unfortunately, W is not a Hamiltonian cycle since it visits

some vertices more than once

• However, we can delete a visit to any vertex and the cost will

not increase because of the triangle inequality. (The path

without an intermediate vertex can only be shorter)

• By repeatedly applying this operation, we can remove from

W all but the first visit to each vertex, without increasing

the cost of W .

• In our example, this will give us the ordering H = (a, b, c, h, d, e, f, g)

82

Analysis

• By the last slide, c(H) ≤ c(W).

• So c(H) ≤ c(W) = 2c(T) ≤ 2c(H∗)
• Thus, c(H) ≤ 2c(H∗)
• In other words, the Hamiltonian cycle found by the algorithm

has cost no more than twice the shortest Hamiltonian cycle.

83

Take Away

• Many real-world problems can be shown to not have an effi-

cient solution unless P = NP (these are the NP-Hard prob-

lems)

• However, if a problem is shown to be NP-Hard, all hope is

not lost!

• In many cases, we can come up with an provably good ap-

proximation algorithm for the NP-Hard problem.

84

