CS 561, Lecture 2: Randomization in Data Structures

Jared Saia
University of New Mexico
Outline

- Hash Tables
- Skip Lists
- Count-Min Sketch
A dictionary ADT implements the following operations

- \textit{Insert}(x): puts the item x into the dictionary
- \textit{Delete}(x): deletes the item x from the dictionary
- \textit{IsIn}(x): returns true iff the item x is in the dictionary
Dictionary ADT

- Frequently, we think of the items being stored in the dictionary as *keys*
- The keys typically have *records* associated with them which are carried around with the key but not used by the ADT implementation
- Thus we can implement functions like:
 - *Insert*(k,r): puts the item (k,r) into the dictionary if the key k is not already there, otherwise returns an error
 - *Delete*(k): deletes the item with key k from the dictionary
 - *Lookup*(k): returns the item (k,r) if k is in the dictionary, otherwise returns null
Implementing Dictionaries

• The simplest way to implement a dictionary ADT is with a linked list
• Let l be a linked list data structure, assume we have the following operations defined for l
 – head(l): returns a pointer to the head of the list
 – next(p): given a pointer p into the list, returns a pointer to the next element in the list if such exists, null otherwise
 – previous(p): given a pointer p into the list, returns a pointer to the previous element in the list if such exists, null otherwise
 – key(p): given a pointer into the list, returns the key value of that item
 – record(p): given a pointer into the list, returns the record value of that item
Implement a dictionary with a linked list

• Q1: Write the operation Lookup(k) which returns a pointer to the item with key k if it is in the dictionary or null otherwise
• Q2: Write the operation Insert(k,r)
• Q3: Write the operation Delete(k)
• Q4: For a dictionary with n elements, what is the runtime of all of these operations for the linked list data structure?
• Q5: Describe how you would use this dictionary ADT to count the number of occurrences of each word in an online book.
Dictionaries

- This linked list implementation of dictionaries is very slow
- Q: Can we do better?
- A: Yes, with hash tables, AVL trees, etc
Hash Tables implement the Dictionary ADT, namely:

- Insert(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Lookup(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Delete(x) - $O(1)$ expected time, $\Theta(n)$ worst case
Direct Addressing

- Suppose universe of keys is $U = \{0, 1, \ldots, m - 1\}$, where m is not too large
- Assume no two elements have the same key
- We use an array $T[0..m-1]$ to store the keys
- Slot k contains the elem with key k
Direct Address Functions

DA-Search(T,k){ return T[k];}
DA-Insert(T,x){ T[key(x)] = x;}
DA-Delete(T,x){ T[key(x)] = NIL;}

Each of these operations takes $O(1)$ time
Direct Addressing Problem

- If universe U is large, storing the array T may be impractical
- Also much space can be wasted in T if number of objects stored is small
- Q: Can we do better?
- A: Yes we can trade time for space
Hash Tables

• “Key” Idea: An element with key k is stored in slot $h(k)$, where h is a hash function mapping U into the set $\{0, \ldots, m - 1\}$
• Main problem: Two keys can now hash to the same slot
• Q: How do we resolve this problem?
• A1: Try to prevent it by hashing keys to “random” slots and making the table large enough
• A2: Chaining
• A3: Open Addressing
In chaining, all elements that hash to the same slot are put in a linked list.

CH-Insert(T,x){Insert x at the head of list T[h(key(x))];}
CH-Search(T,k){search for elem with key k in list T[h(k)];}
CH-Delete(T,x){delete x from the list T[h(key(x))];}
• CH-Insert and CH-Delete take $O(1)$ time if the list is doubly linked and there are no duplicate keys
• Q: How long does CH-Search take?
• A: It depends. In particular, depends on the load factor, $\alpha = n/m$ (i.e. average number of elems in a list)
CH-Search Analysis

- Worst case analysis: everyone hashes to one slot so $\Theta(n)$
- For average case, make the *simple uniform hashing* assumption: any given elem is equally likely to hash into any of the m slots, indep. of the other elems
- Let n_i be a random variable giving the length of the list at the i-th slot
- Then time to do a search for key k is $1 + n_{h(k)}$
Q: What is $E(n_{h(k)})$?
A: We know that $h(k)$ is uniformly distributed among $\{0, \ldots, m-1\}$
Thus, $E(n_{h(k)}) = \sum_{i=0}^{m-1} (1/m) n_i = n/m = \alpha$
Hash Functions

- Want each key to be equally likely to hash to any of the m slots, independently of the other keys
- Key idea is to use the hash function to “break up” any patterns that might exist in the data
- We will always assume a key is a natural number (can e.g. easily convert strings to naturaly numbers)
Division Method

- $h(k) = k \mod m$
- Want m to be a *prime number*, which is not too close to a power of 2
- Why? Reduces collisions in the case where there is periodicity in the keys inserted
Hash Tables implement the Dictionary ADT, namely:

- Insert(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Lookup(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Delete(x) - $O(1)$ expected time, $\Theta(n)$ worst case
Skip List

- Enables insertions and searches for ordered keys in $O(\log n)$ expected time
- Very elegant randomized data structure, simple to code but analysis is subtle
- They guarantee that, with high probability, all the major operations take $O(\log n)$ time (e.g. Find-Max, Find i-th element, etc.)
A skip list is basically a collection of doubly-linked lists, L_1, L_2, \ldots, L_x, for some integer x.

Each list has a special head and tail node, the keys of these nodes are assumed to be $-\text{MAXNUM}$ and $+\text{MAXNUM}$ respectively.

The keys in each list are in sorted order (non-decreasing).
Skip List

- Every node is stored in the bottom list
- For each node in the bottom list, we flip a coin over and over until we get tails. For each heads, we make a duplicate of the node.
- The duplicates are stacked up in levels and the nodes on each level are strung together in sorted linked lists
- Each node v stores a search key (key(v)), a pointer to its next lower copy (down(v)), and a pointer to the next node in its level (right(v)).
Example
Search

- To do a search for a key, x, we start at the leftmost node L in the highest level.
- We then scan through each level as far as we can without passing the target value x and then proceed down to the next level.
- The search ends either when we find the key x or fail to find x on the lowest level.
Search

SkipListFind(x, L){
 v = L;
 while (v != NULL) and (Key(v) != x){
 if (Key(Right(v)) > x)
 v = Down(v);
 else
 v = Right(v);
 }
 return v;
}

Search Example
Insert

p is a constant between 0 and 1, typically $p = 1/2$, let $\text{rand}()$ return a random value between 0 and 1

Insert(k){
First call Search(k), let pLeft be the leftmost elem $\leq k$ in L_1
Insert k in L_1, to the right of pLeft
i = 2;
while (rand() $\leq p$){
 insert k in the appropriate place in L_i;
}
}
Deletion

- Deletion is very simple
- First do a search for the key to be deleted
- Then delete that key from all the lists it appears in from the bottom up, making sure to “zip up” the lists after the deletion
• Intuitively, each level of the skip list has about half the number of nodes of the previous level, so we expect the total number of levels to be about $O(\log n)$
• Similarly, each time we add another level, we cut the search time in half except for a constant overhead
• So after $O(\log n)$ levels, we would expect a search time of $O(\log n)$
• We will now formalize these two intuitive observations
• For some key, i, let X_i be the maximum height of i in the skip list.
• Q: What is the probability that $X_i \geq 2 \log n$?
• A: If $p = 1/2$, we have:

$$P(X_i \geq 2 \log n) = \left(\frac{1}{2}\right)^{2 \log n} = \frac{1}{(2\log n)^2} = \frac{1}{n^2}$$

• Thus the probability that a particular key i achieves height $2 \log n$ is $\frac{1}{n^2}$
Height of Skip List

- Q: What is the probability that any key achieves height $2 \log n$?
- A: We want

 $$P(X_1 \geq 2 \log n \text{ or } X_2 \geq 2 \log n \text{ or } \ldots \text{ or } X_n \geq 2 \log n)$$

- By a Union Bound, this probability is no more than

 $$P(X_1 \geq k \log n) + P(X_2 \geq k \log n) + \cdots + P(X_n \geq k \log n)$$

- Which equals:

 $$\sum_{i=1}^{n} \frac{1}{n^2} = \frac{n}{n^2} = 1/n$$
• This probability gets small as n gets large
• In particular, the probability of having a skip list of size exceeding $2 \log n$ is $o(1)$
• If an event occurs with probability $1 - o(1)$, we say that it occurs with high probability
• Key Point: The height of a skip list is $O(\log n)$ with high probability.
In-Class Exercise Trick

A trick for computing expectations of discrete positive random variables:

- Let X be a discrete r.v., that takes on values from 1 to n

$$E(X) = \sum_{i=1}^{n} P(X \geq i)$$
\[\sum_{i=1}^{n} P(X \geq i) = P(X = 1) + P(X = 2) + P(X = 3) + \ldots \]

\[+ P(X = 2) + P(X = 3) + P(X = 4) + \ldots \]

\[+ P(X = 3) + P(X = 4) + P(X = 5) + \ldots \]

\[+ \ldots \]

\[= 1 \times P(X = 1) + 2 \times P(X = 2) + 3 \times P(X = 3) + \ldots \]

\[= E(X) \]
In-Class Exercise

Q: How much memory do we expect a skip list to use up?

• Let X_i be the number of lists that element i is inserted in.
• Q: What is $P(X_i \geq 1)$, $P(X_i \geq 2)$, $P(X_i \geq 3)$?
• Q: What is $P(X_i \geq k)$ for general k?
• Q: What is $E(X_i)$?
• Q: Let $X = \sum_{i=1}^{n} X_i$. What is $E(X)$?
Search Time

- It's easier to analyze the search time if we imagine running the search backwards.
- Imagine that we start at the found node v in the bottommost list and we trace the path backwards to the top leftmost sentinel, L.
- This will give us the length of the search path from L to v which is the time required to do the search.
Backwards Search

\[
\text{SLFback}(v)\{
\text{while} (v \neq L)\{
\text{if} \ (\text{Up}(v) \neq \text{NIL})
\begin{align*}
&v = \text{Up}(v); \\
&\text{else}
\end{align*}
\text{\quad } v = \text{Left}(v);
\}
\}
\]
Backward Search

- For every node v in the skip list $\text{Up}(v)$ exists with probability $1/2$. So for purposes of analysis, SLFBack is the same as the following algorithm:

```pseudocode
FlipWalk(v) {
  while (v != L) {
    if (COINFLIP == HEADS)
      v = Up(v);
    else
      v = Left(v);
  }
}
```
Analysis

- For this algorithm, the expected number of heads is exactly the same as the expected number of tails.
- Thus the expected run time of the algorithm is twice the expected number of upward jumps.
- Since we already know that the number of upward jumps is $O(\log n)$ with high probability, we can conclude that the expected search time is $O(\log n)$.
• A router forwards packets through a network
• A natural question for an administrator to ask is: what is the list of substrings of a fixed length that have passed through the router more than a predetermined threshold number of times
• This would be a natural way to try to, for example, identify worms and spam
• Problem: the number of packets passing through the router is *much* too high to be able to store counts for every substring that is seen!
Data Streams

• This problem motivates the data stream model
• Informally: there is a stream of data given as input to the algorithm
• The algorithm can take at most one pass over this data and must process it sequentially
• The memory available to the algorithm is much less than the size of the stream
• In general, we won’t be able to solve problems exactly in this model, only approximate
Our Problem

- We are presented with a stream of tuples of the form \((i_t, c_t)\), where \(i_t\) is an item and \(c_t > 0\) is an integer count increment.
- We want to get a good approximation to the value \(\text{Count}(i, T)\), which is the sum of the count values seen for item \(i\) up to time \(T\).
Our solution will be to use a data structure called a *Count-Min Sketch*

This is a randomized data structure that will keep approximate values of $\text{Count}(i, T)$

It is implemented using k hash functions and m counters
Count-Min Sketch

- Think of our m counters as being in a 2-dimensional array, with m/k counters per row and k rows
- Let $C_{a,j}$ be the counter in row a and column j
- Our hash functions map items from the universe into counters
- In particular, hash function h_a maps item i to counter $C_{a,h_a(i)}$
Updates

- Initially all counters are set to 0
- When we see a tuple \((i, c)\) in the data stream we do the following
- For each \(1 \leq a \leq k\), increment \(C'_{a, h_a(i)}\) by \(c\)
Count Approximations

- Let $C_{a,j}(T)$ be the value of the counter $C_{a,j}$ after processing T tuples.
- We approximate Count(i,T) by returning the value of the smallest counter associated with i.
- Let $m(i,T)$ be this value.
Main Theorem:

• For any item i, $m(i, T) \geq \text{Count}(i, T)$
• With probability at least $1 - e^{-m\epsilon/e}$ the following holds:
 \[m(i, T) \leq \text{Count}(i, T) + \epsilon \sum_{i=1}^{T} c_i \]
• Easy to see that $m(i, T) \geq \text{Count}(i, T)$, since each counter $C_{a,h_a(i)}$ incremented by c_t every time pair (i, c_t) is seen.

• Hard Part: Showing $m(i, T) \leq \text{Count}(i, T) + \epsilon \sum_{i=1}^{T} c_i$.

• To see this, we will first consider the specific counter $C_{1,h_1(i)}$ and then use symmetry.
Proof

- Let Z_1 be a random variable (r.v.) giving the amount the counter is incremented by items other than i.
- Let X_t be an indicator r.v. that is 1 if j is the t-th item, and $j \neq i$ and $h_1(i) = h_1(j)$.
- Then $Z_1 = \sum_{t=1}^{T} X_t c_t$.
- But if the hash functions are “good”, then if $i \neq j$, $Pr(h_1(i) = h_1(j)) \leq k/m$ (specifically, we need the hash functions to come from a 2-universal family, but we won’t get into that in this class).
- Hence, $E(X_t) \leq k/m$.
Thus, by linearity of expectation, we have that:

\[E(Z_1) = \sum_{t=1}^{T} c_t(k/m) \]

\[\leq \frac{k}{m} \sum_{t=1}^{T} c_t \]

We now need to make use of a very important inequality: Markov’s inequality.
Markov’s Inequality

- Let X be a random variable that only takes on non-negative values
- Then for any $\lambda \geq 0$:
 \[\Pr(X \geq \lambda) \leq \frac{E(X)}{\lambda} \]
- Proof of Markov's: Assume instead that there exists a λ such that $\Pr(X \geq \lambda)$ was actually larger than $\frac{E(X)}{\lambda}$
- But then the expected value of X would be at least $\lambda \cdot \Pr(X \geq \lambda) > E(X)$, which is a contradiction!!!
Proof

- Now, by Markov’s inequality,

\[\Pr(Z_1 \geq \epsilon \sum_{t=1}^{T} c_t) \leq \frac{(k/m)}{\epsilon} = \frac{k}{m\epsilon} \]

- This is the event where \(Z_1 \) is “bad” for item \(i \).
Now again assume our k hash functions are “good” in the sense that they are independent.

Then we have that the probability that $Z_j \geq \epsilon \sum_{t=1}^{T} c_t$ for all j is no more than

$$\prod_{i=1}^{k} Pr(Z_j \geq \epsilon \sum_{t=1}^{T} c_t) \leq \left(\frac{k}{m\epsilon} \right)^k$$
Finally, we want to choose a k that minimizes this probability. Using calculus, we can see that the probability is minimized when $k = m\epsilon/e$, in which case
\[
\left(\frac{k}{m\epsilon}\right)^k = e^{m\epsilon/e}
\]
This completes the proof!
Recap

- Our Count-Min Sketch is very good at giving estimating counts of items with very little external space.
- Tradeoff is that it only provides approximate counts, but we can bound the approximation!
- Note: Can use the Count-Min Sketch to keep track of all the items in the stream that occur more than a given threshold ("heavy hitters")
- Basic idea is to store an item in a list of "heavy hitters" if its count estimate ever exceeds some given threshold.
Bloom Filters - NOT COVERED

- Randomized data structure for representing a set. Implements:
 - Insert(x) :
 - IsMember(x) :
- Allow false positives but require very little space
- Used frequently in: Databases, networking problems, p2p networks, packet routing
Bloom Filters

- Have \(m \) slots, \(k \) hash functions, \(n \) elements; assume hash functions are all independent
- Each slot stores 1 bit, initially all bits are 0
- \text{Insert}(x) \) : Set the bit in slots \(h_1(x), h_2(x), ..., h_k(x) \) to 1
- \text{IsMember}(x) \) : Return yes iff the bits in \(h_1(x), h_2(x), ..., h_k(x) \) are all 1
• m slots, k hash functions, n elements; assume hash functions are all independent
• Then $P(\text{fixed slot is still 0}) = (1 - 1/m)^{kn}$
• Useful fact from Taylor expansion of e^{-x}:

 \[e^{-x} - x^2/2 \leq 1 - x \leq e^{-x} \text{ for } x < 1 \]
• Then if $x \leq 1$

 \[e^{-x}(1 - x^2) \leq 1 - x \leq e^{-x} \]
• Thus we have the following to good approximation.

\[P(\text{fixed slot is still 0}) = (1 - \frac{1}{m})^{kn} \approx e^{-km/n} \]

• Let \(p = e^{-kn/m} \) and let \(\rho \) be the fraction of 0 bits after \(n \) elements inserted then

\[P(\text{false positive}) = (1 - \rho)^k \approx (1 - p)^k \]

• Where the first approximation holds because \(\rho \) is very close to \(p \) (by a Martingale argument beyond the scope of this class)
Analysis

• Want to minimize \((1 - p)^k\), which is equivalent to minimizing
 \[g = k \ln(1 - p) \]
• Trick: Note that
 \[g = -(n/m) \ln(p) \ln(1 - p) \]
• By symmetry, this is minimized when \(p = 1/2\) or equivalently
 \[k = (m/n) \ln 2 \]
• False positive rate is then \((1/2)^k \approx (.6185)^{m/n}\)
Tricks

- Can get the union of two sets by just taking the bitwise-or of the bit-vectors for the corresponding Bloom filters.
- Can easily halve the size of a bloom filter - assume size is power of 2 then just bitwise-or the first and second halves together.
- Can approximate the size of the intersection of two sets - inner product of the bit vectors associated with the Bloom filters is a good approximation to this.
Extensions

- Bloomier Filters: Also allow for data to be inserted in the filter - similar functionality to hash tables but less space, and the possibility of false positives.