CS 561, Pre Lecture 2

Jared Saia
University of New Mexico

o Today's Outline

e |L'Hopital's Rule
e Log Facts
e Recurrence Relations

— L'Hopital ——

For any functions f(n) and g(n) which approach infinity and are
differentiable, L'Hopital tells us that:

f(n) _ f'(n)

e Iim = lim L3 Z
=90 g(n) =0 ¢'(n)

Example

——
e QQ: Which grows faster Inn or \/n?
e Let f(n) =Inn and g(n) = +/n
e Then f/(n) =1/n and ¢'(n) = (1/2)n"1/2
e SO we have:
Inn 1/n
im — = Iim 1
n—oo | /n n— 00 (1/2)n—1/2 (1)
_ 2
= 0 (3)
e Thus y/n grows faster than Inn and so Inn = O(y/n)
3

C A digression on logsS ——

It rolls down stairs alone or in pairs,

and over your neighbor’s dog,

it's great for a snack or to put on your back,

it's log, log, log!

- “The Log Song" from the Ren and Stimpy Show

e T he log function shows up very frequently in algorithm anal-
VSIS

e As computer scientists, when we use log, we'll mean log-
(i.e. if no base is given, assume base 2)

C Definition ——

e l0g,y is by definition the value z such that z* =y
o 2929 = y by definition

Examples —_

—
e l0ogl1 =0
o lOg2 =1
e 032 =5
o log2k =k

Note: logn is way, way smaller than n for large values of n

—

log39 =2

logs 125 = 3
109416 =2

l0go4 24100 = 100

Examples —_

Facts about exponents

—

Recall that:

o (z¥)* = 2¥?
o 1Yp? = pYT=z

From these, we can derive some facts about logs

— Facts about 109S ——

To prove both equations, raise both sides to the power of 2, and
use facts about exponents

e Fact 1: log(xy) = logz + logy
e Fact 2: loga® = —cloga

Memorize these two facts

o Incredibly useful fact about 10gS ——

e Fact 3: log.a =1oga/logc

To prove this, consider the equation a = ¢/°9¢¢, take log, of both
sides, and use Fact 2. Memorize this fact

10

o Log facts to memorizé —

e Fact 1: log(xy) = logz + logy
e Fact 2: loga® = —cloga
e Fact 3: log.a =10ga/logc

These facts are sufficient for all your logarithm needs. (You just
need to figure out how to use them)

11

Logs and O notation ————

——
e Note that loggn = logn/log8.
e Note that loggggn2°° = 200 x log n/ log 600.
e Note that 109100000 30%n? = 2xlogn/log 1000004log 30/ log 100000
e Thus, loggn, l0ggoon®99, and 109100000 30%n2 are all O(log n)
e In general, for any constants k; and kp, l0gy, nk2 = kologn/log k1,

which is just O(logn)

12

— Take Away —

e All log functions of form ki 109y, ks *nk4 for constants k1, ko,
k3 and ks are O(logn)

e For this reason, we don’t really “care’” about the base of the
log function when we do asymptotic notation

e [hus, binary search, ternary search and k-ary search all take
O(logn) time

13

— Important Note —

e 10g2n = (logn)?

e 10g2n is O(log?n), not O(logn)

e [his is true since Ioan grows asymptotically faster than
logn

e All log functions of form k4 Iog]]zg k4>|<nk5 for constants kq, ko,

k3,ka and ks are O(logk2n)

14

— At Home Exercise —

Simplify and give O notation for the following functions. In the
big-O notation, write all logs base 2:

e l0g10n2
e l0g2n?
° 2|og4n

e l0glog+/n

15

i0-— ?
o Does big-O really matter? ——

Let n = 100000 and At = 1us

logn 1.7 %« 107> seconds
vn 3.2 % 10~% seconds
n .1 seconds
nlogn 1.2 seconds
n+/n 31.6 seconds

2

n 2.8 hours
n3 31.7 years
2n > 1 century

(from Classic Data Structures in C4++4 by Timothy Budd)

16

— Recurrence RelationS ———

“Oh how should I not lust after eternity and after the nuptial
ring of rings, the ring of recurrence” - Friedrich Nietzsche, Thus
Spoke Zarathustra

e Getting the run times of recursive algorithms can be chal-
lenging

e Consider an algorithm for binary search (next slide)

e Let T'(n) be the run time of this algorithm on an array of
size n

e Then we can write T(1) =1, T(n) =Tn/2)+ 1

17

o Alg: Binary Search ———

bool BinarySearch (int arr[], int s, int e, int key){
if (e-s<=0) return false;
int mid = (e+s)/2;
if (key==arr[mid]){
return true;
telse if (key < arr[mid]){
return BinarySearch (arr,s,mid,key);}
elseq{

return BinarySearch (arr,mid,e,key)}

18

— Recurrence RelationS ———

e T'(n) =T(n/2) + 1 is an example of a recurrence relation

e A Recurrence Relation is any equation for a function T', where
T appears on both the left and right sides of the equation.

e \We always want to ‘solve” these recurrence relation by get-
ting an equation for T', where T appears on just the left side
of the equation

19

— Recurrence RelationS ———

e \Whenever we analyze the run time of a recursive algorithm,
we will first get a recurrence relation

e [0 get the actual run time, we need to solve the recurrence
relation

20

C Substitution Method ——

e One way to solve recurrences is the substitution method aka
“guess and check”

e What we do is make a good guess for the solution to T'(n),
and then try to prove this is the solution by induction

21

C Example ——

e Let's guess that the solution to T'(n) =T(n/2)+1, T(1) =1
is T'(n) = O(logn)
e In other words, T'(n) < clogn for all n > ng, for some positive

constants ¢, ng
e We can prove that T'(n) < clogn is true by plugging back
into the recurrence

22

C Proof —

We prove this by induction:

e B.C.: T(2) =2 < clog?2 provided that ¢ > 2
e IL.H.: Forall j<n, T(j) <clog(j)

o [.S.:
T(n) = T(n/2)+1 (4)
< (clog(n/2)) +1 (5)
= c(logn—log2)+1 (6)
= clogn—c+1 (7)
< clogn (8)

Last step holds for all n > 0 if ¢ > 1. Thus, entire proof holds if
n>2and ¢ > 2.

23

C Recurrences and Induction —

Recurrences and Induction are closely related:

e To find a solution to f(n), solve a recurrence
e To prove that a solution for f(n) is correct, use induction

For both recurrences and induction, we always solve a big prob-
lem by reducing it to smaller problems!

24

o Some Examples —_

e The next several problems can be attacked by induction/recurrences

e For each problem, we'll need to reduce it to smaller problems

e Question: How can we reduce each problem to a smaller
subproblem?

25

o Sum Problem ——

e f(n) is the sum of the integers 1,...,n

26

— Tree Problem

e f(n) is the maximum number of leaf nodes in a binary tree
of height n

Recall:

e In a binary tree, each node has at most two children

e A Jeaf node is a node with no children

e [he height of a tree is the length of the longest path from
the root to a leaf node.

27

o Binary Search Problem —

e f(n) is the maximum number of queries that need to be
made for binary search on a sorted array of size n.

28

— Dominoes Problem ———

e f(n) is the number of ways to tile a 2 by n rectangle with
dominoes (a domino is a 2 by 1 rectangle)

29

o Simpler Subproblems

e Sum Problem: What is the sum of all numbers between 1
and n—1 (i.e. f(n—1))7

e Tree Problem: What is the maximum number of leaf nodes
in a binary tree of height n — 17 (i.e. f(n—1))

e Binary Search Problem: What is the maximum number of
queries that need to be made for binary search on a sorted
array of size n/27 (i.e. f(n/2))

e Dominoes problem: What is the number of ways to tile a
2 by n — 1 rectangle with dominoes? WAhat is the number
of ways to tile a 2 by n — 2 rectangle with dominoes? (i.e.

fn—=1), f(n—2))

30

Recurrences

——
e Sum Problem: f(n)=f(n—-1)4+n, f(1)=1
e Tree Problem: f(n)=2xf(n—-1), f(0) =1
e Binary Search Problem: f(n) = f(n/2)+1, f(2) =1
e Dominoes problem: f(n) = f(n—-1)+ f(n—-2), f(1) =1,

f(2) =2

31

Guesses

—

e Sum Problem: f(n) =(n+ 1)n/2
e Tree Problem: f(n) =2"
e Binary Search Problem: f(n) =logn

e Dominoes problem: f(n) = \}g (1+2\/§>n - \/15 (1_2\/5)”

C Inductive Proofs —

“Trying is the first step to failure” - Homer Simpson

e Now that we've made these guesses, we can try using induc-
tion to prove they’'re correct (the substitution method)
e \We'll give inductive proofs that these guesses are correct for

the first three problems

33

Sum Problem ——

——
e Want to show that f(n) = (n+ 1)n/2.
e Prove by induction on n
e Base case: f(1)=2x1/2=1
e Inductive hypothesis: for all j <n, f(j) = (j +1)j/2
e Inductive step:
fn) = f(n—1)+n
= n(n—1)/24+n
= (n+1)n/2

(9)
(10)

(11)

34

Tree Problem

—

Want to show that f(n) = 2™.

Prove by induction on n
Base case: f(0)=29=1

Inductive hypothesis: for all j <n, f(j) = 2J

Inductive step:

f(n)

2% f(n—1) (12)
2% (27 1) (13)
ol (14)

35

Binary Search Problem —

Want to show that f(n) = logn. (assume n is a power of 2)

Inductive hypothesis: for all j <n, f(j) =109}

——
o
e Prove by induction on n
e Base case: f(2)=log2=1
[
e Inductive step:

f(n)

f(n/2) +1
logn/2 +1
logn —log2 +1
logn

(15)
(16)
(17)
(18)

36

o In Class Exercise —_

e Consider the recurrence f(n) =2f(n/2)+ 1, f(1) =1

e Guess that f(n) <cen — 1:

e Q1: Show the base case - for what values of ¢ does it hold?
e (Q2: What is the inductive hypothesis?

e (Q3: Show the inductive step.

37

TodOo ——

e Read Chapter 3 and 4 in the text
e \Work on Homework 1

38

