CS 561, Pre Lecture 2

Jared Saia University of New Mexico

____ Today's Outline ____

- L'Hopital's Rule
- Log Facts
- Recurrence Relations

L'Hopital _____

For any functions f(n) and g(n) which approach infinity and are differentiable, L'Hopital tells us that:

•
$$\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$$

Example ____

- Q: Which grows faster $\ln n$ or \sqrt{n} ?
- Let $f(n) = \ln n$ and $g(n) = \sqrt{n}$
- Then f'(n) = 1/n and $g'(n) = (1/2)n^{-1/2}$
- So we have:

$$\lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} = \lim_{n \to \infty} \frac{1/n}{(1/2)n^{-1/2}} \tag{1}$$

$$= \lim_{n \to \infty} \frac{2}{n^{1/2}} \tag{2}$$

$$= 0 (3)$$

• Thus \sqrt{n} grows faster than $\ln n$ and so $\ln n = O(\sqrt{n})$

___ A digression on logs ____

It rolls down stairs alone or in pairs, and over your neighbor's dog, it's great for a snack or to put on your back, it's log, log, log!

- "The Log Song" from the Ren and Stimpy Show
 - The log function shows up very frequently in algorithm analysis
 - As computer scientists, when we use log, we'll mean log₂
 (i.e. if no base is given, assume base 2)

Definition _____

- $\bullet \, \log_x y$ is by definition the value z such that $x^z = y$
- $x^{\log_x y} = y$ by definition

Examples ____

- $\log 1 = 0$
- $\log 2 = 1$
- $\log 32 = 5$
- $\log 2^k = k$

Note: $\log n$ is way, way smaller than n for large values of n

Examples ____

- $\log_3 9 = 2$
- $\log_5 125 = 3$
- $\log_4 16 = 2$
- $\log_{24} 24^{100} = 100$

Facts about exponents _____

Recall that:

- $\bullet (x^y)^z = x^{yz}$
- $\bullet \ x^y x^z = x^{y+z}$

From these, we can derive some facts about logs

Facts about logs _____

To prove both equations, raise both sides to the power of 2, and use facts about exponents

- Fact 1: $\log(xy) = \log x + \log y$
- Fact 2: $\log a^c = c \log a$

Memorize these two facts

Incredibly useful fact about logs _____

• Fact 3: $\log_c a = \log a / \log c$

To prove this, consider the equation $a = c^{\log_c a}$, take \log_2 of both sides, and use Fact 2. **Memorize this fact**

Log facts to memorize _____

- Fact 1: $\log(xy) = \log x + \log y$
- Fact 2: $\log a^c = c \log a$
- Fact 3: $\log_c a = \log a / \log c$

These facts are sufficient for all your logarithm needs. (You just need to figure out how to use them)

Logs and O notation ____

- Note that $\log_8 n = \log n / \log 8$.
- Note that $\log_{600} n^{200} = 200 * \log n / \log 600$.
- Note that $\log_{100000} 30*n^2 = 2*\log n/\log 100000 + \log 30/\log 100000$
- Thus, $\log_8 n$, $\log_{600} n^{600}$, and $\log_{100000} 30*n^2$ are all $O(\log n)$
- In general, for any constants k_1 and k_2 , $\log_{k_1} n^{k_2} = k_2 \log n / \log k_1$, which is just $O(\log n)$

Take Away _____

- All log functions of form $k_1 \log_{k_2} k_3 * n^{k_4}$ for constants k_1 , k_2 , k_3 and k_4 are $O(\log n)$
- For this reason, we don't really "care" about the base of the log function when we do asymptotic notation
- Thus, binary search, ternary search and k-ary search all take $O(\log n)$ time

Important Note __

- $\log^2 n = (\log n)^2$
- $\log^2 n$ is $O(\log^2 n)$, not $O(\log n)$
- \bullet This is true since $\log^2 n$ grows asymptotically faster than $\log n$
- All log functions of form $k_1 \log_{k_3}^{k_2} k_4 * n^{k_5}$ for constants k_1 , k_2 , k_3 , k_4 and k_5 are $O(\log^{k_2} n)$

___ At Home Exercise ___

Simplify and give O notation for the following functions. In the big-O notation, write all logs base 2:

- $\log 10n^2$
- $\log^2 n^4$
- $2^{\log_4 n}$
- $\log \log \sqrt{n}$

Does big-O really matter? ____

```
Let n=100000 and \Delta t=1\mu s

\log n   1.7*10^{-5} seconds

\sqrt{n}   3.2*10^{-4} seconds

n   .1 seconds

n\log n   1.2 seconds

n\sqrt{n}   31.6 seconds

n^2   2.8 hours

n^3   31.7 years

2^n   > 1 century
```

(from Classic Data Structures in C++ by Timothy Budd)

Recurrence Relations ____

"Oh how should I not lust after eternity and after the nuptial ring of rings, the ring of recurrence" - Friedrich Nietzsche, Thus Spoke Zarathustra

- Getting the run times of recursive algorithms can be challenging
- Consider an algorithm for binary search (next slide)
- Let T(n) be the run time of this algorithm on an array of size n
- Then we can write T(1) = 1, T(n) = T(n/2) + 1

Alg: Binary Search —

```
bool BinarySearch (int arr[], int s, int e, int key){
  if (e-s<=0) return false;
  int mid = (e+s)/2;
  if (key==arr[mid]){
    return true;
  }else if (key < arr[mid]){
    return BinarySearch (arr,s,mid,key);}
  else{
    return BinarySearch (arr,mid,e,key)}
}</pre>
```

Recurrence Relations _____

- T(n) = T(n/2) + 1 is an example of a recurrence relation
- A Recurrence Relation is any equation for a function T, where T appears on both the left and right sides of the equation.
- ullet We always want to "solve" these recurrence relation by getting an equation for T, where T appears on just the left side of the equation

Recurrence Relations _____

- Whenever we analyze the run time of a recursive algorithm, we will first get a recurrence relation
- To get the actual run time, we need to solve the recurrence relation

Substitution Method _____

- One way to solve recurrences is the substitution method aka "guess and check"
- What we do is make a good guess for the solution to T(n), and then try to prove this is the solution by induction

Example ____

- Let's guess that the solution to T(n) = T(n/2) + 1, T(1) = 1 is $T(n) = O(\log n)$
- In other words, $T(n) \le c \log n$ for all $n \ge n_0$, for some positive constants c, n_0
- ullet We can prove that $T(n) \leq c \log n$ is true by plugging back into the recurrence

Proof _____

We prove this by induction:

- B.C.: $T(2) = 2 \le c \log 2$ provided that $c \ge 2$
- I.H.: For all j < n, $T(j) \le c \log(j)$
- I.S.:

$$T(n) = T(n/2) + 1$$
 (4)

$$\leq (c\log(n/2)) + 1 \tag{5}$$

$$= c(\log n - \log 2) + 1 \tag{6}$$

$$= c \log n - c + 1 \tag{7}$$

$$\leq c \log n$$
 (8)

Last step holds for all n > 0 if $c \ge 1$. Thus, entire proof holds if $n \ge 2$ and $c \ge 2$.

Recurrences and Induction ____

Recurrences and Induction are closely related:

- \bullet To find a solution to f(n), solve a recurrence
- ullet To prove that a solution for f(n) is correct, use induction

For both recurrences and induction, we always solve a big problem by reducing it to smaller problems!

Some Examples ____

- The next several problems can be attacked by induction/recurrences
- For each problem, we'll need to reduce it to smaller problems
- Question: How can we reduce each problem to a smaller subproblem?

____ Sum Problem ____

• f(n) is the sum of the integers $1, \ldots, n$

Tree Problem ____

ullet f(n) is the maximum number of leaf nodes in a binary tree of height n

Recall:

- In a binary tree, each node has at most two children
- A leaf node is a node with no children
- The height of a tree is the length of the longest path from the root to a leaf node.

Binary Search Problem _____

• f(n) is the maximum number of queries that need to be made for binary search on a sorted array of size n.

Dominoes Problem _____

• f(n) is the number of ways to tile a 2 by n rectangle with dominoes (a domino is a 2 by 1 rectangle)

Simpler Subproblems _____

- Sum Problem: What is the sum of all numbers between 1 and n-1 (i.e. f(n-1))?
- Tree Problem: What is the maximum number of leaf nodes in a binary tree of height n-1? (i.e. f(n-1))
- Binary Search Problem: What is the maximum number of queries that need to be made for binary search on a sorted array of size n/2? (i.e. f(n/2))
- Dominoes problem: What is the number of ways to tile a 2 by n-1 rectangle with dominoes? What is the number of ways to tile a 2 by n-2 rectangle with dominoes? (i.e. f(n-1), f(n-2))

Recurrences ____

- Sum Problem: f(n) = f(n-1) + n, f(1) = 1
- Tree Problem: f(n) = 2 * f(n-1), f(0) = 1
- Binary Search Problem: f(n) = f(n/2) + 1, f(2) = 1
- Dominoes problem: f(n) = f(n-1) + f(n-2), f(1) = 1, f(2) = 2

Guesses ___

- Sum Problem: f(n) = (n+1)n/2
- Tree Problem: $f(n) = 2^n$
- Binary Search Problem: $f(n) = \log n$
- Dominoes problem: $f(n) = \frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2} \right)^n \frac{1}{\sqrt{5}} \left(\frac{1-\sqrt{5}}{2} \right)^n$

Inductive Proofs _____

"Trying is the first step to failure" - Homer Simpson

- Now that we've made these guesses, we can try using induction to prove they're correct (the substitution method)
- We'll give inductive proofs that these guesses are correct for the first three problems

Sum Problem ____

- Want to show that f(n) = (n+1)n/2.
- ullet Prove by induction on n
- Base case: f(1) = 2 * 1/2 = 1
- Inductive hypothesis: for all j < n, f(j) = (j+1)j/2
- Inductive step:

$$f(n) = f(n-1) + n \tag{9}$$

$$= n(n-1)/2 + n (10)$$

$$= (n+1)n/2 (11)$$

Tree Problem ____

- Want to show that $f(n) = 2^n$.
- ullet Prove by induction on n
- Base case: $f(0) = 2^0 = 1$
- Inductive hypothesis: for all j < n, $f(j) = 2^{j}$
- Inductive step:

$$f(n) = 2 * f(n-1)$$
 (12)

$$= 2*(2^{n-1}) (13)$$

$$= 2^n \tag{14}$$

Binary Search Problem ____

- Want to show that $f(n) = \log n$. (assume n is a power of 2)
- Prove by induction on *n*
- Base case: $f(2) = \log 2 = 1$
- Inductive hypothesis: for all j < n, $f(j) = \log j$
- Inductive step:

$$f(n) = f(n/2) + 1 (15)$$

$$= \log n/2 + 1 \tag{16}$$

$$= \log n - \log 2 + 1 \tag{17}$$

$$= \log n \tag{18}$$

In Class Exercise ___

- Consider the recurrence f(n) = 2f(n/2) + 1, f(1) = 1
- Guess that $f(n) \leq cn 1$:
- ullet Q1: Show the base case for what values of c does it hold?
- Q2: What is the inductive hypothesis?
- Q3: Show the inductive step.

____ Todo ____

- Read Chapter 3 and 4 in the text
- Work on Homework 1