
University of New Mexico
Department of Computer Science

Midterm Examination
CS 561 Data Structures and Algorithms

Fall, 2010

Name:

Email:

• “Nothing is true. All is permitted” - Friedrich Nietzsche. Well, not exactly. You are not
permitted to discuss this exam with any other person. If you do so, you will surely
be smitten: collusion on any problem will result in a 0 on the entire exam. However, you may
consult any non-human sources including books, papers, web pages, computational devices,
animal entrails, seraphim, cherubim, etc. in your quest for truth and solutions. Please
acknowledge your sources.

• Show your work! You will not get full credit if we cannot figure out how you arrived at your
answer. A numerical solution obtained via a computer program is unlikely to get much credit,
if any, without a correct mathematical derivation.

• Write your solution in the space provided for the corresponding problem.

• If any question is unclear, ask for clarification.

Question Points Score Grader

1 25

2 25

3 25

4 25

Total 100



1. Recurrences

Remember that when the base case for a recurrence is not explicitly given, assume that it is
constant for inputs of constant size.

(a) (4 points) Solve the following recurrence using annihilators: f(n) = 3f(n− 1)− 2f(n−
2) + n. Do not solve for the constant coefficients

(b) (4 points) Solve the following recurrence using a transformation and the Master method:
f(n) = 4f(

√
n) + log n. Do not solve for the constant coefficients. If an algorithms

runtime is given by this recurrence, how would it compare with algorithms with runtimes
of θ(2n), θ(n), θ(

√
n), θ(log n)?



How many ways can you tile a n by 1 rectangle if you have an infinite supply of domi-
noes of size x by 1 for each x, 1 ≤ x ≤ n? Assume dominoes of the same size are
indistinguishable.

(c) (4 points) Let f(n) be the number of unique tilings of a n by 1 rectangle. Write a
recurrence relation for f(n). Include the base case(s).

(d) (5 points) Now guess an exact solution for this recurrence relation and prove your solution
is correct using proof by induction.



(e) (8 points) Now what if the dominoes can be red or black? Write down the recurrence,
and an inductive proof of the solution.



2. Probability

The following two problems are similar to a problem in homework 1, although note that the
cards now have an additional attribute.

Imagine a card game where each card has 4 attributes: number, shape, color and shading;
and each attribute has three possible values: number is 1, 2 or 3; shape is circle, square or
triangle; color is red, green or blue; and shading is none, dashed or solid. Each card in the
deck is unique, so there is a total of 3 ∗ 3 ∗ 3 ∗ 3 = 81 cards.

A match is a set of 3 cards where for each of the 4 attributes, the 3 cards either all have
the same value for that attribute, or they all have different values for that attribute. For
example the following set of cards is a match: (1, circle, red, none), (2, square, red, dashed),
(3, triangle, red, solid)

(a) (4 points) If I lay out n cards on a table where n ≤ 81, what is the expected number
of sets of 3 cards that will form matches? Show that your answer makes sense for the
boundary conditions (n = 3 and n = 81)?

(b) (4 points) Now, use Markov’s inequality to bound the probability that there are at least
k matches for any k, when n cards are laid on the table. In particular, what does this
say about the probability that there is at least one match?



Consider a wireless network consisting of n2 nodes laid out on a n by n grid. A pair of
nodes are said to be neighbors if they are immediately adjacent either horizontally or
vertically on the grid (thus a node has at most 4 neighbors). For some number `, each
node chooses a channel uniformly at random from 1 to `. Two nodes are said to collide
if they are neighbors and they have both chosen the same channel.

Note: The events that collisions occur are not independent. In particular, consider 4
nodes on a square: a and b on the left and c and d on the right. If a and b, b and c,
and c and d collide, then a and d must collide.

(c) (6 points) Use a union bound to get an upperbound on the probability that there are
any collisions. How large must ` be to ensure that this probability is less than 1/2?

(d) (5 points) Now use Markov’s inequality to bound the probability that n pairs of nodes
collide.



(e) (6 points) Imagine that the purpose of the wireless network is to convey messages from
the top to bottom where the same message is sent redundantly along each column; and
to convey messages from left to right, where the same message is sent redundantly along
each row. Thus, we want to ensure that there is some column where each pair of neigh-
boring nodes in that column does not collide, and some row with the same property.
Using your work from above, determine how large ` must be to ensure that this property
holds with probability at least 9/10. (Remember: the collisions are not independent!)



3. Data Structures

Your colleague wants to change the rules of red-black trees to the following:

• The root node and leaf nodes (NIL) can be either red or black

• If a node is red and not a leaf node, both of its children are black

• If a node is black and not a leaf node, both of its children are red

• For each node, all paths from the node to descendant leaves contain the same number
of black nodes

(a) (6 points) Is it possible to use these rules to create a balanced BST data structure? If
so, sketch your solution. If not, show how things can go wrong with a minimum size
counter-example.



(b) (5 points) Your boss wants to create the following data structure in the comparison
model and to name it after himself, the Merkle. A Merkle has the following operations
and properties on it. BuildMerkle takes an arbitrary array and builds a Merkle from it in
O(n) time. The resulting Merkle will provide the following operations. FindMin (resp.
FindMax) will return the minimum (resp. maximum) element and run in O(log n) time.
Successor(x) (resp. Predecessor(x)) return the next largest (resp. smallest) element in
the Merkle after the element x, and both of these operations run inO(1) time. Intuitively,
your boss wants you to combine the nice properties of the heap with the nice properties
of a data structure like skip lists. Can you immortalize your boss’s name in CS textbooks
by creating this data structure?



In this problem, you will modify count-min sketches so that they handle negative counts.
As in class, assume you are presented with a stream of tuples of the form (it, ct), except
now ct may be either a negative or positive integer. The data structure you will use will
consist of two count-min sketches, a positive count-min sketch for positive counts and a
negative count-min sketch for negative counts. In particular, each of the two sketches
will use m counters and k hash functions, where all hash functions can be assumed to
be independent. If ct is positive, in the positive count-min sketch (positive sketch for
short), for each 1 ≤ a ≤ k, Ca,ha(i) will be incremented by ct. If ct is negative, in the
negative sketch, for each 1 ≤ a ≤ k, Ca,ha(i) will be incremented by −ct. The estimate of
the count of an item, i at time T is m+(i, T )−m−(i, T , where m+(i, T ) is the value of
the smallest counter associated with i in the positive sketch and m−(i, T ) is the value of
the smallest counter associated with i in the negative sketch. As in class, let Count(i, T )
be the true count of item i in the stream up to time T . Also assume that k = mε/e for
the positive sketch and for the negative sketch.

(c) (7 points) Give a good bound on the probability that the following holds:

Count(i, T )− ε
T∑
i=1

|ci| ≤ m(i, T ) ≤ Count(i, T ) + ε
T∑
i=1

|ci|

Please prove your bound.



(d) (7 points) Now imagine you are given a constant number of data streams D1, D2, . . . , Dc

and weights associated with them w1, w2, . . . wc that may be positive or negative real
numbers. For each item i, at time T , define Count(i, T ) to be the weighted sum of the
count values seen in all data streams up to time T , where a count value seen in stream i
is weighted by wi. Assume now that all count values seen are positive. Describe a data
structure based on count-min sketches that can approximate Count(i, T ). How much
memory does your data structure use? How closely can you approximate Count(i, T )
and with what probability? Please justify your answers. For consistency in notation,
please let S(i, j, T ) be the sum of the counts of item i in stream j up to time T .



4. Dynamic Programming

Consider a collection of n nodes aligned on a line, numbered 1 to n. Two nodes are connected
by an edge if they are adjacent on the line, e.g. nodes i and i+ 1 are neighbors. For each pair
i, i+ 1 of neighboring nodes, there is a weight wi,i+1 associated with the pair, which may be
either positive or negative.

In this problem, each node will be colored with one of two colors, red or blue. If a pair (i, i+1)
of neighboring nodes are colored the same, the cost associated with that pair is wi,i+1; if the
pair are colored differently, the cost associated with that pair is −wi,i+1. The total cost of a
coloring is the sum of the costs of all neighboring pairs.

(a) (10 points) Describe a dynamic program to output the minimum cost of any coloring,
when given all edge weights. Hint: Let c(i, r) be the minimum cost of coloring nodes 1
through i when node i is colored red. Let c(i, b) be the minimum cost of coloring nodes
1 through i when node i is colored blue.



Now imagine that the nodes are connected in a n by n grid, and that each node can
be colored with m possible colors. There is an edge between a pair of nodes on the
grid if they are immediately adjacent either horizontally or vertically; again, each edge
has a weight associated with it that may be either positive or negative. (For example
neighboring nodes (i, j) and (i+1, j) would have an edge with weight w((i, j), (i+1, j)))

(b) (15 points) Describe a dynamic program to output the minimum cost of any coloring,
when given all edge weights for a grid. What is the runtime of your algorithm?


