CS 561, Lecture 11

Jared Saia
University of New Mexico
Outline

• All Pairs Shortest Paths
• Floyd Warshall Algorithm
All-Pairs Shortest Paths

- For the single-source shortest paths problem, we wanted to find the shortest path from a source vertex s to all the other vertices in the graph.
- We will now generalize this problem further to that of finding the shortest path from every possible source to every possible destination.
- In particular, for every pair of vertices u and v, we need to compute the following information:
 - $\text{dist}(u, v)$ is the length of the shortest path (if any) from u to v.
 - $\text{pred}(u, v)$ is the second-to-last vertex (if any) on the shortest path (if any) from u to v.
Example

- For any vertex v, we have $\text{dist}(v, v) = 0$ and $\text{pred}(v, v) = \text{NULL}$
- If the shortest path from u to v is only one edge long, then $\text{dist}(u, v) = w(u \rightarrow v)$ and $\text{pred}(u, v) = u$
- If there’s no shortest path from u to v, then $\text{dist}(u, v) = \infty$ and $\text{pred}(u, v) = \text{NULL}$
• The output of our shortest path algorithm will be a pair of \(|V| \times |V|\) arrays encoding all \(|V|^2\) distances and predecessors.
• Many maps contain such a distance matrix - to find the distance from (say) Albuquerque to (say) Ruidoso, you look in the row labeled “Albuquerque” and the column labeled “Ruidoso”
• In this class, we’ll focus only on computing the distance array
• The predecessor array, from which you would compute the actual shortest paths, can be computed with only minor additions to the algorithms presented here
Lots of Single Sources

- Most obvious solution to APSP is to just run SSSP algorithm $|V|$ times, once for every possible source vertex
- Specifically, to fill in the subarray $\text{dist}(s, \ast)$, we invoke either Dijkstra’s or Bellman-Ford starting at the source vertex s
- We’ll call this algorithm ObviousAPSP
ObviousAPSP

ObviousAPSP(V,E,w){
 for every vertex s{
 dist(s,*) = SSSP(V,E,w,s);
 }
}
The running time of this algorithm depends on which SSSP algorithm we use

- If we use Bellman-Ford, the overall running time is $O(|V|^2|E|) = O(|V|^4)$
- If all the edge weights are positive, we can use Dijkstra’s instead, which decreases the run time to $\Theta(|V||E| + |V|^2 \log |V|) = O(|V|^3)$
Problem

- We’d like to have an algorithm which takes $O(|V|^3)$ but which can also handle negative edge weights
- We’ll see that a dynamic programming algorithm, the Floyd Warshall algorithm, will achieve this
- Note: the book discusses another algorithm, Johnson’s algorithm, which is asymptotically better than Floyd Warshall on sparse graphs. However we will not be discussing this algorithm in class.
Dynamic Programming

- Recall: Dynamic Programming = Recursion + Memorization
- Thus we first need to come up with a recursive formulation of the problem
- We might recursively define $\text{dist}(u, v)$ as follows:

$$
\text{dist}(u, v) = \begin{cases}
0 & \text{if } u = v \\
\min_x \left(\text{dist}(u, x) + w(x \rightarrow v) \right) & \text{otherwise}
\end{cases}
$$
The problem

• In other words, to find the shortest path from u to v, try all possible predecessors x, compute the shortest path from u to x and then add the last edge $u \rightarrow v$

• Unfortunately, this recurrence doesn’t work

• To compute $\text{dist}(u, v)$, we first must compute $\text{dist}(u, x)$ for every other vertex x, but to compute any $\text{dist}(u, x)$, we first need to compute $\text{dist}(u, v)$

• We’re stuck in an infinite loop!
The solution

- To avoid this circular dependency, we need some additional parameter that decreases at each recursion and eventually reaches zero at the base case.
- One possibility is to include the number of edges in the shortest path as this third magic parameter.
- So define $dist(u, v, k)$ to be the length of the shortest path from u to v that uses at most k edges.
- Since we know that the shortest path between any two vertices uses at most $|V| - 1$ edges, what we want to compute is $dist(u, v, |V| - 1)$.
The Recurrence

$$dist(u, v, k) = \begin{cases} 0 & \text{if } u = v \\ \infty & \text{if } k = 0 \text{ and } u \neq v \\ \min_x \left(dist(u, x, k-1) + w(x \to v) \right) & \text{otherwise} \end{cases}$$
The Algorithm

- It’s not hard to turn this recurrence into a dynamic programming algorithm
- Even before we write down the algorithm, though, we can tell that its running time will be $\Theta(|V|^4)$
- This is just because the recurrence has four variables — u, v, k and x — each of which can take on $|V|$ different values
- Except for the base cases, the algorithm will just be four nested “for” loops
DP-APSP

DP-APSP(V,E,w){
 for all vertices u in V{
 for all vertices v in V{
 if(u=v)
 dist(u,v,0) = 0;
 else
 dist(u,v,0) = infinity;
 }}
 for k=1 to |V|-1{
 for all vertices u in V{
 for all vertices u in V{
 dist(u,v,k) = infinity;
 for all vertices x in V{
 if (dist(u,v,k)>dist(u,x,k-1)+w(x,v))
 dist(u,v,k) = dist(u,x,k-1)+w(x,v);
 }}
 }}
}
• This algorithm still takes $O(|V|^4)$ which is no better than the ObviousAPSP algorithm
• If we use a certain divide and conquer technique, there is a way to get this down to $O(|V|^3 \log |V|)$ (think about how you might do this)
• However, to get down to $O(|V|^3)$ run time, we need to use a different third parameter in the recurrence
Floyd-Warshall

- Number the vertices arbitrarily from 1 to $|V|$.
- Define $\text{dist}(u, v, r)$ to be the shortest path from u to v where all intermediate vertices (if any) are numbered r or less.
- If $r = 0$, we can’t use any intermediate vertices so shortest path from u to v is just the weight of the edge (if any) between u and v.
- If $r > 0$, then either the shortest legal path from u to v goes through vertex r or it doesn’t.
- We need to compute the shortest path distance from u to v with no restrictions, which is just $\text{dist}(u, v, |V|)$.
We get the following recurrence:

\[
dist(u, v, r) = \begin{cases}
 w(u \to v) & \text{if } r = 0 \\
 \min\{dist(u, v, r - 1), \\
 dist(u, r, r - 1) + dist(r, v, r - 1)\} & \text{otherwise}
\end{cases}
\]
The Algorithm

FloydWarshall(V,E,w) {
 for u=1 to |V| {
 for v=1 to |V| {
 dist(u,v,0) = w(u,v);
 }
 }
 for r=1 to |V| {
 for u=1 to |V| {
 for v=1 to |V| {
 if (dist(u,v,r-1) < dist(u,r,r-1) + dist(r,v,r-1))
 dist(u,v,r) = dist(u,v,r-1);
 else
 dist(u,v,r) = dist(u,r,r-1) + dist(r,v,r-1);
 }
 }
 }
}
There are three variables here, each of which takes on $|V|$ possible values.

Thus the run time is $\Theta(|V|^3)$.

Space required is also $\Theta(|V|^3)$.
Take Away

- Floyd-Warshall solves the APSP problem in \(\Theta(|V|^3) \) time even with negative edge weights
- Floyd-Warshall uses dynamic programming to compute APSP
- We’ve seen that sometimes for a dynamic program, we need to introduce an extra variable to break dependencies in the recurrence.
- We’ve also seen that the choice of this extra variable can have a big impact on the run time of the dynamic program