
CS 561, Lecture 5

Jared Saia

University of New Mexico



Binary Search Trees

• Overview

• Red Black Trees

• AVL, B-Trees, Splay Trees

1



Binary Search Trees

• Binary Search Trees are another data structure for imple-

menting the dictionary ADT

2



Red-Black Trees

Red-Black trees (a kind of binary tree) also implement the Dic-

tionary ADT, namely:

• Insert(x) - O(logn) time

• Lookup(x) - O(logn) time

• Delete(x) - O(logn) time

3



Why BST?

• Q: When would you use a Search Tree?

• A1: When need a hard guarantee on the worst case run times

(e.g. “mission critical” code)

• A2: When want something more dynamic than a hash table

(e.g. don’t want to have to enlarge a hash table when the

load factor gets too large)

• A3: Search trees can implement some other important op-

erations...

4



Search Tree Operations

• Insert

• Lookup

• Delete

• Minimum/Maximum

• Predecessor/Successor

5



What is a BST?

• It’s a binary tree

• Each node holds a key and record field, and a pointer to left

and right children

• Binary Search Tree Property is maintained

6



Binary Search Tree Property

• Let x be a node in a binary search tree. If y is a node in the

left subtree of x, then key(y)≤key(x). If y is a node in the

right subtree of x then key(x)≤key(y)

7



Example BST

8



Inorder Walk

• BSTs are arranged in such a way that we can print out the

elements in sorted order in Θ(n) time

• Inorder Tree-Walk does this

9



Inorder Tree-Walk

Inorder-TW(x){

if (x is not nil){

Inorder-TW(left(x));

print key(x);

Inorder-TW(right(x));

}

10



Example Tree-Walk

11



Analysis

• Correctness?

• Run time?

12



Search in BT

Tree-Search(x,k){

if (x=nil) or (k = key(x)){

return x;

}

if (k<key(x)){

return Tree-Search(left(x),k);

}else{

return Tree-Search(right(x),k);

}

}

13



Analysis

• Let h be the height of the tree

• The run time is O(h)

• Correctness???

14



In-Class Exercise

• Q1: What is the loop invariant for Tree-Search?

• Q2: What is Initialization?

• Q3: Maintenance?

• Q4: Termination?

15



Binary Search Tree Property

• Let x be a node in a binary search tree. If y is a node in the

left subtree of x, then key(y)≤key(x). If y is a node in the

right subtree of x then key(x)≤key(y)

16



Search in BT

Tree-Search(x,k){

if (x=nil) or (k = key(x)){

return x;

}

if (k<key(x)){

return Tree-Search(left(x),k);

}else{

return Tree-Search(right(x),k);

}

}

17



Analysis

• Let h be the height of the tree

• The run time is O(h)

• Correctness???

18



Previous In-Class Exercise

• Q1: What is the loop invariant for Tree-Search?

• Q2: What is Initialization?

• Q3: Maintenance?

• Q4: Termination?

19



Loop Invariant Review

A useful tool for proving correctness is loop invariants. Three

things must be shown about a loop invariant

• Initialization: Invariant is true before first iteration of loop

• Maintenance: If invariant is true before iteration i, it is also

true before iteration i+ 1

• Termination: When the loop terminates, the invariant gives

a property which can be used to show the algorithm is correct

20



Loop Invariant Review

• When Initialization and Maintenance hold, the loop invari-

ant is true prior to every iteration of the loop

• Similar to mathematical induction: must show both base

case and inductive step

• Showing the invariant holds before the first iteration is like

the base case. Showing the invariant holds from iteration to

iteration is like the inductive step

21



Loop Invariant Review

• Termination shows that if the loop invariant is true after

the last iteration of the loop, then the algorithm is correct

• The termination condition is different than induction

22



Choosing Loop Invariants

• Q: How do we choose the right loop invariant for an algo-

rithm?

• A1: There is no standard recipe for doing this. It’s like

choosing the right guess for the solution to a recurrence

relation.

• A2: Following is one possible recipe:

1. Study the algorithm and list what important invariants

seem true during iterations of the loop - it may help to

simulate the algorithm on small inputs to get this list of

invariants

2. From the list of invariants, select one which seems strong

enough to prove the correctness of the algorithm

3. Try to show Initialization, Maintenance and Termination

for this invariant. If you’re unable to show all three prop-

erties, go back to the step 1.

23



Answers

• To show: If key k exists in the tree, Tree-Search returns the

elem with key k, otherwise Tree-Search returns nil.

• Loop Invariant: If key k exists in the tree, then it exists in

the subtree rooted at node x

24



Answers

• Initialization: Before the first iteration, x is the root of the

entire tree, therefor if key k exists in the tree, then it exists

in the subtree rooted at node x

25



Maintenance

• Maintenance: Assume at the beginning of the procedure, it’s

true that if key k exists in the tree that it is in the subtree

rooted at node x. There are three cases that can occur

during the procedure:

– Case 1: key(x) is k. In this case, the procedure terminates

and returns x, so the invariant continues to hold

– Case 2: k<key(x). In this case, by the BST Property,

all keys in the subtree rooted on the right child of x are

greater than k (since key(x)>k). Thus, if k exists in the

subtree rooted at x, it must exist in the subtree rooted at

left(x).

– Case 3:k>key(x). In this case, by the BST Property, All

keys in the subtree rooted on the right child of x are less

than k (since key(x)<k). Thus, if k exists in the subtree

rooted at x, it must exist in the subtree rooted at right(x).

26



Termination

• By the loop invariant, we know that when the procedure

terminates, if k is in the tree, then it is in the subtree rooted

at x. If k is in fact in the tree, then x will never be nil, and so

the procedure will only terminate by returning a node with

key k. If k is not in the tree, then the only way the procedure

will terminate is when x is nil. Thus, in this case also, the

procedure will return the correct answer.

27



Tree Min/Max

• Tree Minimum(x): Return the leftmost child in the tree

rooted at x

• Tree Maximum(x): Return the rightmost child in the tree

rooted at x

28



Successor

• The successor of a node x is the node that comes after x in

the sorted order determined by an in-order tree walk.

• If all keys are distinct, the successor of a node x is the node

with the smallest key greater than x

29



Tree-Successor

Tree-Successor(x){

if (right(x) != null){

return Tree-Minimum(right(x));

}

y = parent(x);

while (y!=null and x=right(y)){

x = y;

y = parent(y);

}

return y;

}

30



Successor Intuition

• Case 1: If right subtree of x is non-empty, successor(x) is

just the leftmost node in the right subtree

• Case 2: If the right subtree of x is empty and x has a suc-

cessor,x then successor(x) is the lowest ancestor of x whose

left child is also an ancestor of x. (i.e. the lowest ancestor

of x whose key is ≥ key(x))

31



Insertion

Insert(T,x)

1. Let r be the root of T .

2. Do Tree-Search(r,key(x)) and let p be the last node pro-

cessed in that search

3. If p is nil (there is no tree), make x the root of a new tree

4. Else if key(x) ≤ p, make x the left child of p, else make x

the right child of p

32



Deletion

• Code is in book, basically there are three cases, two are easy

and one is tricky

• Case 1: The node to delete has no children. Then we just

delete the node

• Case 2: The node to delete has one child. Then we delete

the node and “splice” together the two resulting trees

33



Case 3

Case 3: The node, x to be deleted has two children

1. Swap x with Successor(x) (Successor(x) has no more than 1

child (why?))

2. Remove x, using the procedure for case 1 or case 2.

34



Analysis

• All of these operations take O(h) time where h is the height

of the tree

• If n is the number of nodes in the tree, in the worst case, h

is O(n)

• However, if we can keep the tree balanced, we can ensure

that h = O(logn)

• Red-Black trees can maintain a balanced BST

35



Randomly Built BST

• What if we build a binary search tree by inserting a bunch of

elements at random?

• Q: What will be the average depth of a node in such a

randomly built tree? We’ll show that it’s O(logn)

• For a tree T and node x, let d(x, T ) be the depth of node x

in T

• Define the total path length, P (T ), to be the sum over all

nodes x in T of d(x, T )

36



Analysis

“Shut up brain or I’ll poke you with a Q-Tip” - Homer Simpson

• Note that the average depth of a node in T is

1

n

∑
x∈T

d(x, T ) =
1

n
P (T )

• Thus we want to show that P (T ) = O(n logn)

37



Analysis

• Let Tl, Tr be the left and right subtrees of T respectively.

Let n be the number of nodes in T

• Then P (T ) = P (Tl) + P (Tr) + n− 1. Why?

38



Analysis

• Let P (n) be the expected total depth of all nodes in a ran-

domly built binary tree with n nodes

• Note that for all i, 0 ≤ i ≤ n − 1, the probability that Tl has

i nodes and Tr has n− i− 1 nodes is 1/n.

• Thus P (n) = 1
n

∑n−1
i=0 (P (i) + P (n− i− 1) + n− 1)

39



Analysis

P (n) =
1

n

n−1∑
i=0

(P (i) + P (n− i− 1) + n− 1) (1)

=
1

n
(
n−1∑
i=0

(P (i) + P (n− i− 1)) +
1

n
(
n−1∑
i=0

n− 1)) (2)

=
1

n
(
n−1∑
i=0

(P (i) + P (n− i− 1)) + Θ(n) (3)

=
2

n
(
n−1∑
k=1

P (k)) + Θ(n) (4)

(5)

40



Analysis

• We have P (n) = 2
n(
∑n−1
k=1 P (k)) + Θ(n)

• This is the same recurrence for randomized Quicksort

• In your hw (problem 7-2), you show that the solution to this

recurrence is P (n) = O(n logn)

41



Take Away

• P (n) is the expected total depth of all nodes in a randomly

built binary tree with n nodes.

• We’ve shown that P (n) = O(n logn)

• There are n nodes total

• Thus the expected average depth of a node is O(logn)

42



Take Away

• The expected average depth of a node in a randomly built

binary tree is O(logn)

• This implies that operations like search, insert, delete take

expected time O(logn) for a randomly built binary tree

43



Warning!

• In many cases, data is not inserted randomly into a binary

search tree

• I.e. many binary search trees are not “randomly built”

• For example, data might be inserted into the binary search

tree in almost sorted order

• Then the BST would not be randomly built, and so the

expected average depth of the nodes would not be O(logn)

44



What to do?

• A Red-Black tree implements the dictionary operations in

such a way that the height of the tree is always O(logn),

where n is the number of nodes

• This will guarantee that no matter how the tree is built that

all operations will always take O(logn) time

• Next time we’ll see how to create Red-Black Trees

45



Outline

• Red Black Trees (Chapter 13)

46



Red-Black Properties

A BST is a red-black tree if it satisfies the RB-Properties

1. Every node is either red or black

2. The root is black

3. Every leaf (NIL) is black

4. If a node is red, then both its children are black

5. For each node, all paths from the node to descendant leaves

contain the same number of black nodes

47



Example RB-Tree

5

2 4

7

3 6

8

48



Black Height

• Black-height of a node x, bh(x) is the number of black nodes

on any path from, but not including x down to a leaf node.

• Note that the black-height of a node is well-defined since all

paths have the same number of black nodes

• The black-height of an RB-Tree is just the black-height of

the root

49



Key Lemma

• Lemma: A RB-Tree with n internal nodes has height at most

2 log(n+ 1)

• Proof Sketch:

1. The subtree rooted at the node x contains at least

2bh(x) − 1 internal nodes

2. For the root r, bh(r) ≥ h/2, thus n ≥ 2h/2 − 1. Taking

logs of both sides, we get that h ≤ 2 log(n+ 1)

50



Proof

1) The subtree rooted at the node x contains at least 2bh(x)− 1

internal nodes. Show by induction on the height of x.

• BC: If the height of x is 0, then x is a leaf, and subtree

rooted at x does indeed contain 20 − 1 = 0 internal nodes

• IH: For all nodes y of height less than x, the subtree rooted

at y contains at least 2bh(y) − 1 internal nodes.

• IS: Consider a node x which is an internal node with two

children(all internal nodes have two children). Each child

has black-height of either bh(x) or bh(x) − 1 (the former if

it is red, the latter if it is black). Since the height of these

children is less than x, we can apply the inductive hypothesis

to conclude that each child has at least 2bh(x)−1− 1 internal

nodes. This implies that the subtree rooted at x has at least

(2bh(x)−1−1) + (2bh(x)−1−1) + 1 = 2bh(x)−1 internal nodes.

This proves the claim.

51



Maintenance?

• How do we ensure that the Red-Black Properties are main-

tained?

• I.e. when we insert a new node, what do we color it? How do

we re-arrange the new tree so that the Red-Black Property

holds?

• How about for deletions?

52



Left-Rotate

• Left-Rotate(x) takes a node x and “rotates” x with its right

child

• Right-Rotate is the symmetric operation

• Both Left-Rotate and Right-Rotate preserve the BST Prop-

erty

• We’ll use Left-Rotate and Right-Rotate in the RB-Insert pro-

cedure

53



Picture

x

y

y

x
T1

T2 T3 T1 T2

T3

Left!Rotate(x)

Right!Rotate(y)

54



Example

x

y

5

7

6 8

3

42

y

x

7

5

3

2 4

6

8

Left!Rotate(x)

55



Binary Search Tree Property

• Let x be a node in a binary search tree. If y is a node in the

left subtree of x, then key(y)≤key(x). If y is a node in the

right subtree of x then key(y)≥key(x)

56



In-Class Exercise

Show that Left-Rotate(x) maintains the BST Property. In other

words, show that if the BST Property was true for the tree

before the Left-Rotate(x) operation, then it’s true for the tree

after the operation.

• Show that after rotation, the BST property holds for the

entire subtree rooted at x

• Show that after rotation, the BST property holds for the

subtree rooted at y

• Now argue that after rotation, the BST property holds for

the entire tree

57



RB-Insert(T,z)

1. Set left(z) and right(z) to be NIL

2. Let y be the last node processed during a search for z in T

3. Insert z as the appropriate child of y (left child if key(z)≤ y,

right child otherwise)

4. Color z red

5. Call the procedure RB-Insert-Fixup

58



RB-Insert-Fixup(T,z)

RB-Insert-Fixup(T,z){

while (color(p(z)) is red){

case 1: z’s uncle, y, is red{

do case 1

}

case 2: z’s uncle, y, is black and z is a right child{

do case 2

}

case 3: z’s uncle, y, is black and z is a left child{

do case 3

}

}

color(root(T)) = black;

}

59



Case 1

D

B

A

C C

A D

B

C

B

A

D

C

B

A

D

T1

T2 T3

T4 T5

T1 T2

T3 T4 T5

T1

T2 T3

T4 T5

T1 T2

T3 T4 T5

z

y

new z

z

y

new z

60



Case 2 and 3

B

A

C

T1

T2 T3

z

T4 y

C

B

A

T1 T2

T3

T4

Case 2 Case 3

B

A C

z

z

y

T1 T2 T3 T4

61



Loop Invariant

At the start of each iteration of the loop:

• Node z is red

• If parent(z) is the root, then parent(z) is black

• If there is a violation of the red-black properties, there is at

most one violation, and it is either property 2 or 4. If there is

a violation of property 2, it occurs because z is the root and

is red. If there is a violation of property 4, it occurs because

both z and parent(z) are red.

62



Pseudocode

• Detailed Pseudocode for RB-Insert and RB-Insert-Fixup is in

the book, Chapter 13.3

• A detailed proof of correctness for RB-Insert-Fixup in the the

same Chapter

• Code for RB-Deletion is also in Chapter 13

63



Other Balanced BSTs

• We’ll now briefly discuss some other balanced BSTs

• They all implement Insert, Delete, Lookup, Successor, Pre-

decessor, Maximum and Minimum efficiently

64



AVL Trees

• An AVL tree is height-balanced: For each node x, the heights

of the left and right subtrees of x differ by at most 1

• Each node has an additional height field h(x)

• Claim: An AVL tree with n nodes has height O(logn)

65



AVL Trees

• Claim: An AVL tree with n nodes has height O(logn)

• Q: For an AVL tree of height h, how many nodes must it

have in it?

• A: We can write a recurrence relation. Let T (h) be the

minimum number of nodes in a tree of height h

• Then T (h) = T (h− 1) + T (h− 2) + 1, T (1) = 2, T (2) = 4

• This is similar to the recurrence relation for Fibonnaci num-

bers! Solution:

T (h) ≥
(

1 +
√

5

2

)h
− 1

66



AVL Trees

• So we have the equation n > T (h). Let φ = 1+
√

5
2 . Then:

n ≥ φh − 2 (6)

logn ≥ h logφ− 1 (7)

logn+ 1 ≥ h logφ (8)

C ∗ logn ≥ h (9)

• Where the final inequality holds for appropriate constant C,

and for n large enough. The final inequality implies that

h = O(logn)

67



AVL Tree Insertion

• After insert into an AVL tree, the tree may no longer be

height-balanced

• Need to “fix-up” the subtrees so that they become height-

balanced again

• Can do this using rotations (similar to case for RB-Trees)

• Similar story for deletions

68



B-Trees

• B-Trees are balanced search trees designed to work well on

disks

• B-Trees are not binary trees: each node can have many

children

• Each node of a B-Tree contains several keys, not just one

• When doing searches, we decide which child link to follow by

finding the correct interval of our search key in the key set

of the current node.

69



Disk Accesses

• Consider any search tree

• The number of disk accesses per search will dominate the

run time

• Unless the entire tree is in memory, there will usually be a

disk access every time an arbitrary node is examined

• The number of disk accesses for most operations on a B-tree

is proportional to the height of the B-tree

• I.e. The info on each node of a B-tree can be stored in main

memory

70



B-Tree Properties

The following is true for every node x

• x stores keys, key1(x), . . . keyl(x) in sorted order (nondecreas-

ing)

• x contains pointers, c1(x), . . . , cl+1(x) to its children

• Let ki be any key stored in the subtree rooted at the i-th child

of x, then k1 ≤ key1(x) ≤ k2 ≤ key2(x) · · · ≤ keyl(x) ≤ kl+1

71



B-Tree Properties

• All leaves have the same depth

• Lower and upper bounds on the number of keys a node can

contain. Given as a function of a fixed integer t

– Every node other than the root must have ≥ (t− 1) keys,

and t children. If the tree is non-empty, the root must

have at least one key (and 2 children)

– Every node can contain at most 2t−1 keys, so any internal

node can have at most 2t children

72



Note

• The above properties imply that the height of a B-tree is no

more than logt
n+1

2 , for t ≥ 2, where n is the number of keys.

• If we make t, larger, we can save a larger (constant) fraction

over RB-trees in the number of nodes examined

• A (2-3-4)-tree is just a B-tree with t = 2

73



In-Class Exercise

We will now show that for any B-Tree with height h and n keys,

h ≤ logt
n+1

2 , where t ≥ 2.

Consider a B-Tree of height h > 1

• Q1: What is the minimum number of nodes at depth 1, 2,

and 3

• Q2: What is the minimum number of nodes at depth i?

• Q3: Now give a lowerbound for the total number of keys

(e.g. n ≥???)

• Q4: Show how to solve for h in this inequality to get an

upperbound on h

74



Splay Trees

• A Splay Tree is a kind of BST where the standard operations

run in O(logn) amortized time

• This means that over l operations (e.g. Insert, Lookup,

Delete, etc), where l is sufficiently large, the total cost is

O(l ∗ logn)

• In other words, the average cost per operation is O(logn)

• However a single operation could still take O(n) time

• In practice, they are very fast

75



Skip Lists

• Technically, not a BST, but they implement all of the same

operations

• Very elegant randomized data structure, simple to code but

analysis is subtle

• They guarantee that, with high probability, all the major op-

erations take O(logn) time

• We’ll discuss them more next class

76



High Level Analysis

Comparison of various BSTs

• RB-Trees: + guarantee O(logn) time for each operation,

easy to augment, − high constants

• AVL-Trees: + guarantee O(logn) time for each operation,

− high constants

• B-Trees: + works well for trees that won’t fit in memory, −
inserts and deletes are more complicated

• Splay Tress: + small constants, − amortized guarantees only

• Skip Lists: + easy to implement, − runtime guarantees are

probabilistic only

77



Which Data Structure to use?

• Splay trees work very well in practice, the “hidden constants”

are small

• Unfortunately, they can not guarantee that every operation

takes O(logn)

• When this guarantee is required, B-Trees are best when the

entire tree will not be stored in memory

• If the entire tree will be stored in memory, RB-Trees, AVL-

Trees, and Skip Lists are good

78


