1. Exercise 3.1-2: Show that for any real constants a and b, where $b > 0$, that $(n + a)^b = \theta(n^b)$

2. Prove that $o(g(n)) \cap \omega(g(n))$ is the empty set

3. Assume you have functions f and g, such that $f(n)$ is $O(g(n))$. For each of the following statements, decide whether you think it is true or false and give either a proof or a counterexample

 - $\log_2 f(n)$ is $O(\log_2 g(n))$
 - $2^{f(n)}$ is $O(2^{g(n)})$
 - $f(n)^2$ is $O(g(n)^2)$

4. Problem 3-2 (Relative asymptotic growths)

5. Prove that $\log n! = \theta(n \log n)$ and that $n! = \omega(2^n)$ and $n! = o(n^n)$

6. Problem 7-3 (Alternative quicksort analysis)

7. Problem 8-4 (Waterjugs)

8. The game of Match is played with a special deck of 27 cards. Each card has three attributes: color, shape and number. The possible color values are \{red, blue, green\}, the possible shape values are \{square, circle, heart\}, and the possible number values are \{1, 2, 3\}. Each of the $3 \times 3 \times 3 = 27$ possible combinations is represented by a card in the deck. A match is a set of 3 cards with the property that for every
one of the three attributes, either all the cards have the same value for that attribute or they all have different values for that attribute. For example, the following three cards are a match: (3, red, square), (2, blue, square), (1, green, square).

- If we shuffle the deck and turn over three cards, what is the probability that they form a match? Hint: given the first two cards, what is the probability that the third forms a match?
- If we shuffle the deck and turn over n cards where $n \leq 27$, what is the expected number of matches, where we count each match separately even if they overlap? Note: The cards in a match do not need to be adjacent! Is your expression correct for $n = 27$?

9. Drunken Debutants: Imagine that there are n debutants, each with her own porsche. After a late and wild party, each debutante stumbles into a porsche selected independently and uniformly at random (thus, more than one debutant may wind up in a porsche). Let X be a random variable giving the number of debutants that wind up in their own porsche. Use linearity of expectation to compute the expected value of X. Now use Markov’s inequality, to bound the probability that X is larger than k for any positive k.

2