
CS 561, HW4

Prof. Jared Saia, University of New Mexico

Due: October 18th

1. Consider the following alternative greedy algorithms for the activity
selection problem discussed in class. For each algorithm, either prove
or disprove that it constructs an optimal schedule.

• Choose an activity with shortest duration, discard all conflicting
activities and recurse

• Choose an activity that starts first, discard all conflicting activi-
ties and recurse

• Choose an activity that ends latest, discard all conflicting activ-
ities and recurse

• Choose an activity that conflicts with the fewest other activities,
discard all conflicting activities and recurse

2. Now consider a weighted version of the activity selection problem.
Imagine that each activity, ai has a weight, w(ai) (weights are totally
unrelated to activity duration). Your goal is now to choose a set of non-
conicting activities that give you the largest possible sum of weights,
given an array of start times, end times, and values as input.

(a) Prove that the greedy algorithm described in class - Choose the
activity that ends first and recurse - does not always return an
optimal schedule.

(b) Describe an algorithm to compute the optimal schedule in O(n2)
time. Hint: 1) Sort the activities by finish times. 2) Let m(j) be
the maximum weight achievable from activities a1, a2, . . . , aj . 3)
Come up with a recursive formulation for m(j) and use dynamic
programming. Hint 2: In the recursion in step 3, it’ll help if you
precompute for each job j, the value xj which is the largest index
i less than j such that job i is compatible with job j. Then when

1



computing m(j), consider that the optimal schedule could either
include job j or not include job j.

3. Consider a data structure over an initially empty list that supports the
following two operations. APPEND-NUMBER(x): Adds the number
x to the beginning of the list; and MIN-MAX: Computes the min and
max in the list in linear time and then deletes all elements from the
list except for the min and max.

(a) Assume an arbitrary sequence of n operations are performed on
this data structure. What is the worst case run time of any
particular operation?

(b) Show that the amortized cost of an operation is O(1) using the
potential method. Make sure to prove your potential function is
valid.

4. Suppose we are maintaining a data structure under a series of opera-
tions. Let f(n) denote the actual running time of the nth operation.
For each of the following functions f , determine the resulting amor-
tized cost of a single operation.

• f(n) = n if n is a power of 2, and f(n) = 1 otherwise.

• f(n) = n2 if n is a power of 2, and f(n) = 1 otherwise.

5. REMOVED!!! Consider a new data structure that combines the prop-
erties of both stacks and queues. It may be viewed as a list of elements
written left to right with three possible operations:

• Push: add a new item to the left end of the list

• Pop: remove the item on the left end of the list

• Pull: remove the item on the right end of the list

Show how to implement this new data structure using only: one stack,
one queue, and O(1) additional memory, so that the amortized time for
all three operations is O(1). You are allowed to access the stack
and queue only through the standard operations: PUSH and
POP for the stack, and PUSH and PULL for the queue..
Prove the operations for your new data structure have O(1) amortized
cost.

2


