
University of New Mexico
Department of Computer Science

Midterm Examination
CS 561 Data Structures and Algorithms

Fall, 2012

Name:

Email:

• This exam lasts 75 minutes. It is open book and open notes but no electronic devices are
permitted.

• Show your work! You will not get full credit if we cannot figure out how you arrived at your
answer.

• Write your solution in the space provided for the corresponding problem.

• If any question is unclear, ask for clarification.

Question Points Score Grader

1 20

2 20

3 20

4 20

5 20

Total 100



1. Short Answer

Answer the following questions using simplest possible θ notation. Draw a box around your
final answer. No need to justify answers for problems on this page.

(a) Solution to the following recurrence relation: f(n) = 3f(n/2) + n.

(b) Solution to the following recurrence relation: f(n) = 5f(n− 1)− 6f(n− 2) + n.

(c) Number of balls that must be thrown uniformly and independently into n bins before
we expect at least one pair of balls to fall in the same bin.

(d) Runtime of fastest algorithm to solve the Fractional Knapsack problem over n when
the value per pound of each item is distributed independently and uniformly at random
between 0 and 1.



(e) Consider the recurrence f(1) = 2, f(n) = f(n/2) ∗ f(3n/4). Prove via induction that
f(n) ≥ 2n. Don’t forget the base case (BC), inductive hypothesis (IH) and inductive
step (IS). Also make it clear where you are using the IH in the IS.



2. Amortized Analysis

Recall that in class we discussed an INCREMENT algorithm for incrementing a binary
counter in O(1) amortized time. Now suppose we want to also support a RESET opera-
tion that sets all the bits in the counter to 0. Below are the algorithms for INCREMENT and
RESET. They make use of an array B of bits and a variable m which is the most significant
bit.

Algorithm 1 INCREMENT(B[0, . . . ,∞],m)

1: i← 0
2: while B[i] = 1 do
3: B[i]← 0
4: i← i+ 1
5: end while
6: B[i]← 1
7: if i > m then
8: m← i
9: end if

Algorithm 2 RESET(B[0, . . . ,∞],m)

1: for i← 0 to m do
2: B[i]← 0
3: end for

In the following questions, let n be the number of operations on this binary counter.

(a) What is the worst-case run time of INCREMENT as a function of n?

(b) What is the worst-case run time of RESET as a function of n?

(c) Prove that in an arbitrary sequence of calls to INCREMENT and RESET, each operation
has an amortized cost of O(1).



2. Amortized Analysis, continued.



3. Probability

Imagine we place m sensor nodes independently and uniformly at random in the cells of a n
by n array. We say that a pair of sensors conflict if they are in the same row or in the same
column.

(a) What is the expected number of pairs of sensors that conflict?

(b) How large must m be for the expected number of conflicting pairs to be greater than 1.
Give your answer in θ() notation as a function of n.



4. Donuts Revisted

Assume there are three types of donut boxes: a box containing x1 = 1 donut costing c1
dollars; a box containing x2 donuts costing c2 dollars; and a box containing x3 donuts costing
c3 dollars. You want to buy exactly n donuts at minimum cost. (Note that since x1 = 1, you
can now always buy exactly n donuts for any positive n.)

(a) Let m(i) be the minimum cost of exactly i donuts. Write a recurrence relation for m(i).
Don’t forget the base case(s).

(b) Now describe in 1-3 sentences how you would create an algorithm to compute the mini-
mum cost way to buy exactly n donuts. We only want a high level description, not the
entire algorithm. You will loose points on this answer if you write more than 3 sentences.



(c) Now describe in 3-4 sentences how you would amend your algorithm so that it also
returns the set of boxes that achieves the minimum cost. You will loose points if you
write more than 4 sentences.



5. Drunken Debutants

Recall that in the homework, we had n debutants (debs) randomly assigning themselves to
n porsches. Here we consider a new variant. Assume that both the debs and porsches are
labelled 1 through n, where porsche i belongs to debutante i. Now the debs leave the party
in order from 1 to n. Deb 1 is drunk and enters a porsche uniformly at random. Then for
i = 2, 3, . . . n, deb i first checks porsche i. If it’s empty, she stays there, if it’s full, she enters
a porsche chosen uniformly at random from all empty porsches.

In this problem, you will calculate the value f(n), the probability that the last deb enters her
own porsche.

(a) Note that f(1) = 1. What is f(2)?

(b) Write a recurrence relation for f(n). Hint 1: Deb 1 enters porsche 1 with probability
1/n. What is f(n) in this case? How about if deb 1 enters porsche 2? In that case, can
you write f(n) as f(j) for some j < n. Hint 2: The right hand side of your recurrence
should contain many f(j) values.



(c) Now use the guess and check method to solve for the exact value of f(n) for n ≥ 2.
Don’t forget to include base case, IH, and IS.
Hint: To get a good guess, you may want to compute f(3) and f(4) from the recurrence
in order to spot a trend.


