Final Examination
CS 561 Data Structures and Algorithms
Fall, 2013

Name:
Email:

- This exam lasts 2 hours. It is closed book and closed notes wing no electronic devices. However, you are allowed a 1 page cheat sheet.

- *Show your work!* You will not get full credit if we cannot figure out how you arrived at your answer.

- Write your solution in the space provided for the corresponding problem.

- If any question is unclear, ask for clarification.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
<th>Score</th>
<th>Grader</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. Short Answer

Answer the following questions using simplest possible θ notation. Draw a box around your final answer. No need to justify answers for problems on this page.

(a) \(\binom{n}{3} \frac{1}{n^2} \)

(b) Worst case runtime of randomized quicksort on a list of n elements?

(c) Expected number of items at the $\log n$ level of a skip list?

(d) Amount of space required by a count min sketch used on a data stream containing m items?

(e) Solution to the following recurrence $T(n) = 2T(n/4) + \sqrt{n}$

(f) Solution to the following recurrence relation: $f(n) = 3f(n-1) - 2f(n-2)$.
(g) The time to determine if a weighted graph with n nodes and m edges has a negative cycle that is reachable from a given node.

(h) Recall that in class we showed how to create a Dynamic table where the amortized costs for Insert and Delete were $\theta(1)$. If an algorithm makes $\theta(n)$ calls to Insert or Delete in a table, what is the worst case cost of all of these calls?

(i) What is the worst case cost of a single one of the n calls in the problem above?

(j) Recall that Kruskal’s algorithm uses the Union-Find data structure as follows: there are n calls to Make-Set, at most $2m$ calls to Find-Set and at most n calls to Union. In class, we showed that the amortized cost of each of these three operations is $O(\log^* n)$ when there are n elements in the sets. Based on these facts, what is the amount of time Kruskals spends on Union-Find operations in the worst case?

(k) You have computed a max flow f in a network G with n nodes and m edges, and now an edge of G has its capacity increase by exactly 1. What is the cost of the most efficient algorithm to find a new max flow for G?
2. Short Answer

(a) (10 points) Before a party, \(n \) people check their hats. The hats are mixed up during the party so that at the end of the party, each person gets a random hat. In particular, each person gets their own hat with probability \(1/n \). What is the expected number of people who receive their own hat?
(b) (10 points) In 4-SAT problem, you are given a boolean formula, \(f \), in conjunctive normal form where each clause has exactly 4 variables, and you are asked if this formula can be satisfied. For example, given \(f = (a \lor b \lor c \lor d) \land (\neg a \lor \neg b \lor \neg c \lor \neg d) \land (a \lor \neg b \lor c \lor \neg d) \), you should return YES since \(f \) can be satisfied (for example when \(a \) and \(b \) are TRUE and \(c \) and \(d \) are FALSE). Show that 4-SAT is NP-HARD by a reduction from one of the following problems: SAT, 3-SAT, CLIQUE or INDEPENDENT-SET.
3. Dynamic Programming

You are given an input string and a dictionary of words, and need to determine if the input string can be segmented into a space-separated sequence of dictionary words. For example, given the dictionary \{algorithms, data, structure, i, love, snow\} and the input string “ilovealgorithms”, you should output TRUE since the input can be segmented as “i love algorithms”.

Assume you have a function “InDictionary(x)” that returns TRUE iff a string x is in the dictionary, and this function runs in \(O(1)\) time. As input, you are given a string \(s\), which is represented as an array of length \(n\), i.e. \(s = s[1, \ldots, n]\). Define a function \(f\) such that \(f(i)\) is TRUE iff the substring \(s[1..i]\) can be segmented for \(0 \leq i \leq n\). Define \(s[0]\) to be the empty string.

(a) (15 points) Write a recurrence relation for \(f\).

(b) (5 points) Describe in 1-3 sentences (no need for pseudo-code) how you would create a dynamic program based on your recurrence to find the value of \(f(n)\). What are the time and space costs of your algorithm?
4. Max Flow

Figure 1

(a) (3 points) Consider the above network (the numbers are edge capacities). Find the max flow, f, and a min cut in this network.

(b) (3 points) Draw the residual graph G_f (along with its edge capacities). In this residual network, mark the vertices reachable from s and the vertices from which t is reachable.
(c) (3 points) An edge of a network is called a *bottleneck* edge if increasing its capacity results in an increase in the maximum flow. List all bottleneck edges in the above network.

(d) (3 points) Give a very simple example (containing at most four nodes) of a network which has no bottleneck edges. All capacities on your network should be finite.
(e) (8 points) Give an efficient algorithm to identify all bottleneck edges in a network. (Hint: Start by running the usual network flow algorithm, and then examine the residual graph.)
5. **Square in Matrices**

You are given a \(m \times n \) matrix, \(M \), where each cell is either a “1” or “0”. Your goal is to find a maximum size square sub-matrix with all 1’s.

```
0 1 1 0 1
1 1 0 1 0
0 1 1 1 0
1 1 1 1 0
1 1 1 1 1
0 0 0 0 0
```

For example, the above matrix has a maximum size square matrix that is 3 by 3, with bottom right corner at \(M(5,4) \). Give an efficient algorithm to solve this problem. Compute the time and space costs of your algorithm.
5. Square in Matrices, continued.