
CS 561, HW3

Prof. Jared Saia, University of New Mexico

Due: October 1st

1. Problem 4-5 (VLSI chip testing) - This is a really good divide and
conquer problem that I left out of the last hw

2. (h-trees) A h-tree is a rooted binary tree that is a useful data struc-
ture for designing self-healing networks (because they can be merged
quickly). Let ` be a positive integer. For ` a power of 2, the complete
tree with ` leaf nodes is the unique h-tree with ` leaf nodes. For `
not a power of 2, a tree with ` leaf nodes is a h-tree if and only if (1)
the root node, r, has two children; (2) the left subtree of r is the root
of a complete binary containing 2blog `c leaf nodes; and (3) the right
subtree of r is a h-tree. Recall that a complete binary tree is one where
every internal node has two children and every leaf node has the same
depth.

Show the following by induction:

• For all positive `, there is a unique h-tree with ` leaf nodes.

• Call the h-tree with ` leaf nodes h-tree(`). Then, the height of
h-tree(`) is dlog `e

3. Find the optimal parenthesization for a matrix-chain product whose
sequence of dimensions is: (3, 2, 4, 1, 2). (Don’t forget to include the
table used to compute your result)

4. Show via induction that a full parenthesization of an n element ex-
pression has exactly n− 1 pairs of parenthesis.

5. A bakery sells donuts in boxes of three different quantities, x1, x2, and
x3. In the Donut Buying problem, you are given the numbers x1, x2
and x3, and an integer n and you should return either 1) the minimum
number of boxes needed to obtain exactly n donuts if this is possible,

1



along with a set of boxes that obtains this minimum; or 2) “DOH!” if
it is not possible to obtain exactly n donuts.

For example if x1 = 4, x2 = 6, x3 = 9 and n = 17, then you should
return that 3 boxes suffices, with 2 boxes of size 4, and 1 box of size
9. However, if n = 11, you should return DOH! since it is not possible
to buy exactly 11 donuts with these box sizes.

(a) For any positive x, let m(x) be the minimum number of boxes
needed to buy x donuts if this is possible, or INFINITY otherwise.
Write a recurrence relation for the value of m(x). Don’t forget
the base case(s)!

(b) Give an efficient algorithm for solving Donut Buying. How does
its running time depend on x1, x2, x3, and n? Is it an algorithm
that runs in polynomial time in the input sizes?

6. Problem 15-5 (2nd)/ 15-7 (3rd) (Viterbi Algorithm). Note in this
problem, a label can appear on more than one edge in the graph, and
can even appear on more than one edge leaving a given node in the
graph.

7. You are competing in the popular game show “Let’s Make a Dynamic
Program” with another player. You and your opponent both start with
0 dollars. If you reach (or exceed) n dollars before your opponent, you
win n dollars; if your opponent reaches (or exceeds) n dollars before
you, you win nothing; and if you both reach (or exceed) n dollars at
the same time, you both win n dollars. In each turn, you get to choose
the level of difficulty of the next question asked, where this difficulty
is represented by an integer k between 1 and n. If you answer the
question correctly, you get k dollars, otherwise your opponent gets k
dollars. Note that you are always in control throughout the entire
game of the difficulty level of the question asked.

Through careful study of the game you have been able to determine
for all i between 1 and n, the probability pi that you will answer a
question of difficulty i correctly.

(a) Consider the greedy algorithm where you always choose a ques-
tion of difficulty level i for i maximizing i ∗ pi − i ∗ (1 − pi) =
i(2pi − 1). Is this an algorithm that is optimal in the sense that
it maximizes your expected winnings? Hint: Is it ever better
to make a long shot bet because the probability of success from

2



multiple short bets is small. In particular, think about the case
where your opponent has n− 1 dollars and you have 0.

(b) Let state (i, j) be the state where you have i dollars and your
opponent has j dollars. Note that if you choose the difficulty level
to be k at that state, you have probability pk of going to state
(i+k, j) and probability (1−pk) of going to state (i, j +k). Now
let e(i, j) be your expected winnings if you have i dollars and your
opponent has j dollars and you play optimally. Write a recurrence
relation for the value e(i, j). Note: You will find it useful to
consider i and j values that range from 0 to 2n − 1. Hint: Use
expected values for simpler subproblems and the probabilities pi
described above to compute e(i, j). Don’t forget the base case(s).

(c) Give the pseudocode for computing the value e(0, 0), which gives
you your expected winnings if you play this game optimally.

(d) HARD: What if the game is changed as follows. You still se-
lect the difficulty level k, but after your selection, both you and
your opponent have the chance to write down the answer to the
question. Whoever gets the answer correct wins k dollars (note
that both of you may win now). There is no penalty for a wrong
answer. The probability that you answer a question of difficulty
k correctly is pk and the probability that your opponent answers
correctly is qk. Can you still solve this new problem using dy-
namic programming? If so, give a recurrence and describe how
to change the algorithm. If not, describe why not.

3


