CS 561, Pre Lecture 1

Jared Saia
University of New Mexico
Today’s Outline

- Administrative Info
- Asymptotic Analysis
Why study algorithms?

“Seven years of College down the toilet” - John Belushi in Animal House

- Q: Can I get a programming job without knowing something about algorithms and data structures?
- A: Yes, but do you really want to be programming GUIs your entire life?
Almost all big companies want programmers with knowledge of algorithms: Microsoft, Google, Oracle, IBM, Yahoo, Sandia, Los Alamos, etc.

In most programming job interviews, they will ask you several questions about algorithms and/or data structures.

Your knowledge of algorithms will set you apart from the large masses of interviewees who know only how to program.

If you want to start your own company, you should know that many startups are successful because they’ve found better algorithms for solving a problem (e.g. Google, Akamai, etc.)
Why Study Algorithms? (III)

- You’ll improve your research skills in almost any area
- You’ll write better, faster code
- You’ll learn to think more abstractly and mathematically
- It’s one of the most challenging and interesting area of CS!
A Real Job Interview Question

The following is a question commonly asked in job interviews in 2002 (thanks to Maksim Noy, see the career center link from the dept web page for the full compilation of questions):

- You are given an array with integers between 1 and 1,000,000.
- All integers between 1 and 1,000,000 are in the array at least once, and one of those integers is in the array twice.
- Q: Can you determine which integer is in the array twice? Can you do it while iterating through the array only once?
Solution

- Ideas on how to solve this problem?? What if we allowed multiple iterations?
Naive Algorithm

- Create a new array of ints between 1 and 1,000,000, which we’ll use to count the occurrences of each number. Initialize all entries to 0
- Go through the input array and each time a number is seen, update its count in the new array
- Go through the count array and see which number occurs twice.
- Return this number
Q: How long will this algorithm take?
A: We iterate through the numbers 1 to 1,000,000 three times!
Note that we also use up a lot of space with the extra array.
This is wasteful of time and space, particularly as the input array gets very large (e.g. it might be a huge data stream).
Q: Can we do better?
Ideas for a better Algorithm

- Note that $\sum_{i=1}^{n} i = (n + 1)n/2$
- Let S be the sum of the input array
- Let x be the value of the repeated number
- Then $S = (1,000,000 + 1)1,000,000/2 + x$
- Thus $x = S - (1,000,000 + 1)1,000,000/2$
A better Algorithm

- Iterate through the input array, summing up all the numbers, let S be this sum
- Let $x = S - (1,000,000 + 1)1,000,000/2$
- Return x
• This algorithm takes iterates through the input array just once
• It uses up essentially no extra space
• It is at least three times faster than the naive algorithm
• Further, if the input array is so large that it won’t fit in memory, this is the only algorithm which will work!
• These time and space bounds are the best possible
Take Away

• Designing good algorithms matters!
• Not always this easy to improve an algorithm
• However, with some thought and work, you can almost always get a better algorithm than the naive approach
How to analyze an algorithm?

- There are several resource bounds we could be concerned about: time, space, communication bandwidth, logic gates, etc.
- However, we are usually most concerned about time.
- Recall that algorithms are independent of programming languages and machine types.
- Q: So how do we measure resource bounds of algorithms.
Random-access machine model

- We will use RAM model of computation in this class
- All instructions operate in serial
- All basic operations (e.g. add, multiply, compare, read, store, etc.) take unit time
- All “atomic” data (chars, ints, doubles, pointers, etc.) take unit space
Worst Case Analysis

- We’ll generally be pessimistic when we evaluate resource bounds.
- We’ll evaluate the run time of the algorithm on the worst possible input sequence.
- Amazingly, in most cases, we’ll still be able to get pretty good bounds.
- Justification: The “average case” is often about as bad as the worst case.
Example Analysis

- Consider the problem discussed last Tuesday about finding a redundant element in an array.
- Let’s consider the more general problem, where the numbers are 1 to n instead of 1 to 1,000,000.
Algorithm 1

- Create a new “count” array of ints of size n, which we’ll use to count the occurrences of each number. Initialize all entries to 0
- Go through the input array and each time a number is seen, update its count in the “count” array
- As soon as a number is seen in the input array which has already been counted once, return this number
Algorithm 2

- Iterate through the input array, summing up all the numbers, let S be this sum
- Let $x = S - (n + 1)n/2$
- Return x
Example Analysis: Time

- Worst case: Algorithm 1 does $5n$ operations (n inits to 0 in “count” array, n reads of input array, n reads of “count” array (to see if value is 1), n increments, and n stores into count array)
- Worst case: Algorithm 2 does $2n + 4$ operations (n reads of input array, n additions to value S, 4 computations to determine x given S)
Example Analysis: Space

- Worst Case: Algorithm 1 uses n additional units of space to store the “count” array
- Worst Case: Algorithm 2 uses 2 additional units of space
• Analysis above can be tedious for more complicated algorithms
• In many cases, we don’t care about constants. $5n$ is about the same as $2n + 4$ which is about the same as $an + b$ for any constants a and b
• However we do still care about the difference in space: n is very different from 2
• Asymptotic analysis is the solution to removing the tedium but ensuring good analysis
Asymptotic analysis?

- A tool for analyzing time and space usage of algorithms
- Assumes input size is a variable, say n, and gives time and space bounds as a function of n
- Ignores multiplicative and additive constants
- Concerned only with the rate of growth
- E.g. Treats run times of n, $10,000 \times n + 2000$, and $.5n + 2$ all the same (We use the term $O(n)$ to refer to all of them)
• Informally, O notation is the leading (i.e. quickest growing) term of a formula with the coefficient stripped off
• O is sort of a relaxed version of “≤”
• E.g. n is $O(n)$ and n is also $O(n^2)$
• By convention, we use the smallest possible O value i.e. we say n is $O(n)$ rather than n is $O(n^2)$
More Examples

- E.g. n, $10,000n - 2000$, and $.5n + 2$ are all $O(n)$
- $n + \log n$, $n - \sqrt{n}$ are $O(n)$
- $n^2 + n + \log n$, $10n^2 + n - \sqrt{n}$ are $O(n^2)$
- $n \log n + 10n$ is $O(n \log n)$
- $10 \log^2 n$ is $O(\log^2 n)$
- $n\sqrt{n} + n \log n + 10n$ is $O(n\sqrt{n})$
- $10,000$, 2^{50} and 4 are $O(1)$
More Examples

- Algorithm 1 and 2 both take time $O(n)$
- Algorithm 1 uses $O(n)$ extra space
- But, Algorithm 2 uses $O(1)$ extra space
A function \(f(n) \) is \(O(g(n)) \) if there exist positive constants \(c \) and \(n_0 \) such that \(f(n) \leq cg(n) \) for all \(n \geq n_0 \).
Let’s show that $f(n) = 10n + 100$ is $O(g(n))$ where $g(n) = n$

We need to give constants c and n_0 such that $f(n) \leq cg(n)$ for all $n \geq n_0$

In other words, we need constants c and n_0 such that $10n + 100 \leq cn$ for all $n \geq n_0$
Example

- We can solve for appropriate constants:

\[
10n + 100 \leq cn \quad (1)
\]

\[
10 + 100/n \leq c \quad (2)
\]

- So if \(n > 1 \), then \(c \) should be greater than 110.
- In other words, for all \(n > 1 \), \(10n + 100 \leq 110n \)
- So \(10n + 100 \) is \(O(n) \)
Questions

Express the following in O notation

- $n^3/1000 - 100n^2 - 100n + 3$
- $\log n + 100$
- $10 \times \log^2 n + 100$
- $\sum_{i=1}^{n} i$
Relatives of big-O

The following are relatives of big-O:

\[O \leq \Theta = \Omega \geq o < o < \omega \]
When would you use each of these? Examples:

- \(\leq \) “less than or equal to” This algorithm is \(O(n^2) \) (i.e. worst case is \(\Theta(n^2) \))
- \(= \) “equal to” This algorithm is \(\Theta(n) \) (best and worst case are \(\Theta(n) \))
- \(\geq \) “greater than or equal to” Any comparison-based algorithm for sorting is \(\Omega(n \log n) \)
- \(< \) “less than” Can you write an algorithm for sorting that is \(o(n^2) \)?
- \(> \) “greater than” This algorithm is not linear, it can take time \(\omega(n) \)
Rule of Thumb

- Let $f(n)$, $g(n)$ be two functions of n
- Let $f_1(n)$, be the fastest growing term of $f(n)$, stripped of its coefficient.
- Let $g_1(n)$, be the fastest growing term of $g(n)$, stripped of its coefficient.

Then we can say:

- If $f_1(n) \leq g_1(n)$ then $f(n) = O(g(n))$
- If $f_1(n) \geq g_1(n)$ then $f(n) = \Omega(g(n))$
- If $f_1(n) = g_1(n)$ then $f(n) = \Theta(g(n))$
- If $f_1(n) < g_1(n)$ then $f(n) = o(g(n))$
- If $f_1(n) > g_1(n)$ then $f(n) = \omega(g(n))$
More Examples

The following are all true statements:

- \(\sum_{i=1}^{n} i^2 \) is \(O(n^3) \), \(\Omega(n^3) \) and \(\Theta(n^3) \)
- \(\log n \) is \(o(\sqrt{n}) \)
- \(\log n \) is \(o(\log^2 n) \)
- \(10,000n^2 + 25n \) is \(\Theta(n^2) \)
Problems

True or False? (Justify your answer)

- $n^3 + 4$ is $\omega(n^2)$
- $n \log n^3$ is $\Theta(n \log n)$
- $\log^3 5n^2$ is $\Theta(\log n)$
- $10^{-10} n^2 + n$ is $\Theta(n)$
- $n \log n$ is $\Omega(n)$
- $n^3 + 4$ is $o(n^4)$
• \(O(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq f(n) \leq cg(n) \text{ for all } n \geq n_0 \} \)

• \(\Theta(g(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \leq c_1g(n) \leq f(n) \leq c_2g(n) \text{ for all } n \geq n_0 \} \)

• \(\Omega(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \leq cg(n) \leq f(n) \text{ for all } n \geq n_0 \} \)
Formal Defns (II)

- \(o(g(n)) = \{ f(n) : \text{for any positive constant } c > 0 \text{ there exists } n_0 > 0 \text{ such that } 0 \leq f(n) < cg(n) \text{ for all } n \geq n_0 \} \)

- \(\omega(g(n)) = \{ f(n) : \text{for any positive constant } c > 0 \text{ there exists } n_0 > 0 \text{ such that } 0 \leq cg(n) < f(n) \text{ for all } n \geq n_0 \} \)
• Let \(f(n) = 10 \log^2 n + \log n \), \(g(n) = \log^2 n \). Let’s show that
\(f(n) = \Theta(g(n)) \).

• We want positive constants \(c_1, c_2 \) and \(n_0 \) such that
\(0 \leq c_1 g(n) \leq f(n) \leq c_2 g(n) \) for all \(n \geq n_0 \)

\[
0 \leq c_1 \log^2 n \leq 10 \log^2 n + \log n \leq c_2 \log^2 n
\]

Dividing by \(\log^2 n \), we get:

\[
0 \leq c_1 \leq 10 + 1/\log n \leq c_2
\]

• If we choose \(c_1 = 1 \), \(c_2 = 11 \) and \(n_0 = 2 \), then the above inequality will hold for all \(n \geq n_0 \)
In-Class Exercise

Show that for \(f(n) = n + 100 \) and \(g(n) = (1/2)n^2 \), that \(f(n) \neq \Theta(g(n)) \)

- What statement would be true if \(f(n) = \Theta(g(n)) \)?
- Show that this statement can not be true.
Todo

- Read Syllabus
- Visit the class web page: www.cs.unm.edu/~saia/561/
- Sign up for the class mailing list (cs561)
- Read Chapter 3 and 4 in the text