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1. Short Answer

Answer the following questions using simplest possible θ notation. Draw a box around your
final answer. Briefly justify your answer where appropriate.

(a) Solution to the recurrence T (n) = T (n− 1) + n

(b) Solution to the recurrence T (n) = 2T (n/2) + log n

(c) Solution to the recurrence: f(n) = 3f(n− 1)− 2f(n− 2).

(d) Suppose you have a hash function that hashes n items into an array of length
√
n. What

is the expected number of items in the first bin?

(e) Suppose you have a hash function that hashes n items into an array of length n. What
is the expected number of colliding pairs of items (asymptotically, as a function of n)?



(f) Runtime of fastest algorithm to solve the fractional knapsack problem over n items if
each item has a value independent distributed uniformly between 0 and 1, and a weight
that is 1?

(g) What is the expected number of nodes at the (1/2) log n level of a skip list

(h) There is a function on a data structure with amortized cost O(1), but worst case cost
O(n). If you call this function exactly 2 times on a newly initialized data structure,
what is the worst case cost of the sum of those two calls?

(i) Your friend uses the Union-Find data structure to count the number of connected com-
ponents in a graph G = (V,E). First, they call Make-Set on every node. Then, they
go through each edge (u, v) in E, and if Find-Set(u) does not equal Find-Set(v), they
call Union on Find-Set(u) and Find-Set(v). Assume |V | = n and |E| = m, that the
amortized cost for all operations on the data structure is O(log∗ n) and that the worst
case cost of any operation is O(log n). Then what is the worst case runtime of your
friend’s algorithm?

(j) You have computed a max flow f in a network G with n nodes and m edges. What is
the cost of the most efficient algorithm to now find a min s, t cut?



2. Reductions and Induction

Show that the next two problems are NP-Hard via a reduction from one of the fol-
lowing problems: 3-SAT, VERTEX-COVER, INDEPENDENT-SET, 3-COLORABLE,
HAMILTONIAN-CYCLE, or CLIQUE

(a) (5 points) Suspicious Group: There is a set of n attacks on a computer network. For
each attack, there is some subset of m users who were active during that time. You want
to find if there is a suspicious group of k users such that for each attack, there was some
user in the suspicious group active during that attack.

(b) (5 points) Diverse Subset There is a set of n customers, and a set of m items, where
each customer has purchased some subset of the m items. For marketing purposes, you
want to find a diverse subset of customers, S such that no two customers in S have
bought the same product. In the Diverse Subset Problem, you are given an integer
k ≤ n and want to determine if there is a diverse subset of k customers. .



(c) (5 points) Prove by induction that any tree over n nodes has n− 1 edges for any n ≥ 1.
Don’t forget to include the base case, inductive hypothesis and inductive step. Hint: For
the inductive step, what do you get if you remove a leaf node from a tree over n nodes?

(d) (5 points) You have an unbounded supply of stamps with values v1, v2, v3 and a target
value x. Give an algorithm to determine if it is possible to achieve the value x with your
stamps. In particular, for any integer i, let m(i) = 1 if it is possible to achieve value i
with the stamps and 0 otherwise, and show how to compute m(x). For example, if the
stamps have values 3, 6, and 10, then m(17) = 0 and m(29) = 1.



3. Graph Escape

In the graph escape problem, you are given a directed graph G = (V,E) along with a set
of occupied vertices X, and a set of safe vertices Y . You want to find paths from every vertex
in X to some vertex in Y such that none of these paths share an edge.

(a) (5 points) Describe an algorithm to solve this problem.



(b) (7 points) Now imagine the problem is changed so that none of the paths can share a
node. Give an algorithm to solve this new escape problem.



(c) (8 points) Now imagine the escape starts at time 0 with a person at each vertex in X,
and in every time step, a person must traverse some edge. You want to determine if
there are paths for each person such that 1) no two paths traverse the same edge in the
same time step; 2) all paths end at a safe vertex in Y ; and 3) all paths end in at most
n = |V | time steps. Concisely describe an algorithm for this problem.



4. Parenthesis Puzzle

Consider a puzzle where you are trying to place parenthesis in a math formula in order to
maximize the value. The formulas always contain positive numbers, and the two operators
addition (+) and multiplication (·). For example, parenthesize 6+0·6, has solution (6+0)·6 =
36. Another example is that parenthesize: .1 + .1 · .1 has solution .1 + (.1 · .1) = .11.

In general, the input to your problem is x0, o0, x1, o1, . . . on−1, xn, where the xi are positive
numbers and the oi are operators that are either addition or multiplication.

(a) (15 points) For 0 ≤ i ≤ j ≤ n, let m(i, j) be the maximum value achievable by optimally
parenthesizing the formula xi, oi, . . . , oj−1, xj . Write a recurrence relation for m(i, j).
Don’t forget the base case(s).

(b) (5 points) Briefly describe a dynamic program based on the above recurrence relation.
What is the runtime of your program?



5. Challenge Problem

In the MAX-EDGE-COVER problem, you are given a graph G = (V,E) and an integer k,
and you want to find a set of k vertices that maximizes the number of covered edges in
G. In this problem, you will develop an approximation algorithm for MAX-EDGE-COVER,
based on a randomized rounding of a linear program (LP).

(a) (6 points) Write an integer program for MAX-EDGE-COVER. Hint: Create variables xi
for every every vertex, whose value depends on whether or not the vertex is in a cover,
and additional variables zj for every edge, whose value depends on whether or not the
edge is covered.



(b) (8 points) Now consider a relaxation of your integer program above to a linear pro-
gram(LP), where the xi variables can take on real numbers in the range 0 to 1. Let x∗i
and z∗ℓ be the solution found by the LP. For each vertex i, with probability x∗i , include
vertex i in the cover. Let OPT be the optimal max edge cover possible for G using k
vertices. Give a good lower bound on the expected number of edges covered by your
rounding. Hint: Recall the geometric/arithmetic mean inequality:

√
xy ≤ (1/2)(x+y).



(c) (6 points) Imagine that in the solution to you LP,
∑

ℓ z
∗

ℓ = |E|. After the randomized
rounding described above, let X be a random variable giving the number of vertices
included in your cover, and let Y be a random variable giving the number of edges
covered. Show that with constant probability, X ≤ 2k and Y ≥ |E|/3. Hint: Markov’s
inequality and Union bound.


