
CS 561, HW3

Prof. Jared Saia, University of New Mexico

Due: September 29th

1. Problem 4-5 (VLSI chip testing) - This is a really good divide and
conquer problem that I left out of the last hw

2. Show via induction that a full parenthesization of an n element ex-
pression has exactly n− 1 pairs of parenthesis.

3. Find the optimal parenthesization for a matrix-chain product whose
sequence of dimensions is: (3, 2, 4, 1, 2). (Don’t forget to include the
table used to compute your result)

4. A bakery sells donuts in boxes of three different quantities, x1, x2, and
x3. In the Donut Buying problem, you are given the numbers x1, x2
and x3, and an integer n and you should return either 1) the minimum
number of boxes needed to obtain exactly n donuts if this is possible,
along with a set of boxes that obtains this minimum; or 2) “DOH!” if
it is not possible to obtain exactly n donuts.

For example if x1 = 4, x2 = 6, x3 = 9 and n = 17, then you should
return that 3 boxes suffices, with 2 boxes of size 4, and 1 box of size 9.
However, if n = 11, you should return “DOH!” since it is not possible
to buy exactly 11 donuts with these box sizes.

(a) For any positive x, let m(x) be the minimum number of boxes
needed to buy x donuts if this is possible, or INFINITY otherwise.
Write a recurrence relation for the value of m(x). Don’t forget
the base case(s)!

(b) Give an efficient algorithm for solving Donut Buying. How does
its running time depend on x1, x2, x3, and n? Is it an algorithm
that runs in polynomial time in the input sizes?

5. Gus wants to open franchises of his restaurant, Los Pollos Hermanos,
along Central Avenue. There are n possible locations for franchises,

1



where location i is at mile i on Central. Each location i > 1, is thus a
distance of 1 mile from the previous one. There are two rules.

• At each location, there can be at most one restaurant, and the
profit of a restaurant at location i is pi.

• Any two restaurants must be at least 2 miles apart.

(a) Jesse proposes the following algorithm: Sort the locations by de-
creasing pi values, then greedily choose the next possible location,
provided that it doesn’t conflict with previously chosen locations.
Show that Jesse’s algorithm doesn’t always give maximum profit.

(b) Now consider a dynamic programming approach to this problem.
For i ≥ 0, let m(i) be the maximum profit obtainable by using
locations 1 through i. Write a recurrence relation for m(i). Don’t
forget the base case(s).

(c) Describe how you would create a dynamic program using the
previous recurrence. What is the run time of your algorithm?

(d) Now Gus wants to solve a generalization of the problem. There
are two changes. First, for 1 < i ≤ n, location i is now distance
di from location i− 1. Second, any two restaurants must now be
distance k apart for some parameter k. Write a new recurrence
relation for this problem. Don’t forget the base case(s).

6. A h-tree is a rooted binary tree defined as follows. For ` a power of 2,
a tree with ` leaf nodes is a h-tree iff the tree is perfect (recall that a
perfect binary tree is one where all non-leaf nodes have two children,
and all leaf nodes have the same depth). For ` not a power of 2, a tree
with ` leaf nodes is a h-tree if and only if (1) the root node, r, has two
children; (2) the left subtree of r is the root of a perfect binary tree
with 2blog `c leaf nodes; and (3) the right subtree of r is a h-tree.

Show the following by induction:

• For all positive `, there is a unique h-tree with ` leaf nodes.

• Call the h-tree with ` leaf nodes h-tree(`). Then, the height of
h-tree(`) is dlog `e

7. We can use h-trees to design “self-healing” overlay networks, since
h-trees can be merged quickly. In the self-healing application of h-
trees, the leaf nodes are associated with actual machines in a network,

2



and the internal nodes represent additional “router nodes” (a scarce
resource). To merge a list of h-trees, h1, h2, . . . , hx we want to create
a single new h-tree, h, which contains as leaf nodes all the leaf nodes
in h1, h2, . . . , hx, and adds the smallest number of new internal nodes
as possible.

• Show how you can quickly merge a collection of x h-trees, each of
size no more than n, into a single big h-tree by adding no more
than O(x log n) additional internal nodes. What is the runtime
of your algorithm?

Hint: Think about how to set up a correspondence between binary
numbers and h-trees, and binary addition and h-tree merging.

3


