CS 561, Pre Lecture 2

Jared Saia
University of New Mexico

Today's Outline

- L'Hopital's Rule
- Log Facts
- Recurrence Relations

For any functions $f(n)$ and $g(n)$ which approach infinity and are differentiable, L'Hopital tells us that:

- $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\lim _{n \rightarrow \infty} \frac{f^{\prime}(n)}{g^{\prime}(n)}$

Example

- Q: Which grows faster $\ln n$ or \sqrt{n} ?
- Let $f(n)=\ln n$ and $g(n)=\sqrt{n}$
- Then $f^{\prime}(n)=1 / n$ and $g^{\prime}(n)=(1 / 2) n^{-1 / 2}$
- So we have:

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{\ln n}{\sqrt{n}} & =\lim _{n \rightarrow \infty} \frac{1 / n}{(1 / 2) n^{-1 / 2}} \\
& =\lim _{n \rightarrow \infty} \frac{2}{n^{1 / 2}} \\
& =0
\end{aligned}
$$

- Thus \sqrt{n} grows faster than $\ln n$ and so $\ln n=O(\sqrt{n})$

A digression on logs

It rolls down stairs alone or in pairs, and over your neighbor's dog, it's great for a snack or to put on your back, it's log, log, log!

- "The Log Song" from the Ren and Stimpy Show
- The log function shows up very frequently in algorithm analysis
- As computer scientists, when we use log, we'll mean $\log _{2}$ (i.e. if no base is given, assume base 2)

Definition

- $\log _{x} y$ is by definition the value z such that $x^{z}=y$
- $x^{\log _{x} y}=y$ by definition

Examples

- $\log 1=0$
- $\log 2=1$
- $\log 32=5$
- $\log 2^{k}=k$

Note: $\log n$ is way, way smaller than n for large values of n

- $\log _{3} 9=2$
- $\log _{5} 125=3$
- $\log _{4} 16=2$
- $\log _{24} 24^{100}=100$

Facts about exponents

Recall that:

- $\left(x^{y}\right)^{z}=x^{y z}$
- $x^{y} x^{z}=x^{y+z}$

From these, we can derive some facts about logs

Facts about logs

To prove both equations, raise both sides to the power of 2, and use facts about exponents

- Fact 1: $\log (x y)=\log x+\log y$
- Fact 2: $\log a^{c}=c \log a$

Memorize these two facts

Incredibly useful fact about logs

- Fact 3: $\log _{c} a=\log a / \log c$

To prove this, consider the equation $a=c^{\log _{c} a}$, take $\log _{2}$ of both sides, and use Fact 2. Memorize this fact

Log facts to memorize

- Fact 1: $\log (x y)=\log x+\log y$
- Fact 2: $\log a^{c}=c \log a$
- Fact 3: $\log _{c} a=\log a / \log c$

These facts are sufficient for all your logarithm needs. (You just need to figure out how to use them)

Logs and O notation

- Note that $\log _{8} n=\log n / \log 8$.
- Note that $\log _{600} n^{200}=200 * \log n / \log 600$.
- Note that $\log _{100000} 30 * n^{2}=2 * \log n / \log 100000+\log 30 / \log 100000$
- Thus, $\log _{8} n, \log _{600} n^{600}$, and $\log _{100000} 30 * n^{2}$ are all $O(\log n)$
- In general, for any constants k_{1} and $k_{2}, \log _{k_{1}} n^{k_{2}}=k_{2} \log n / \log k_{1}$, which is just $O(\log n)$

Take Away

- All log functions of form $k_{1} \log _{k_{2}} k_{3} * n^{k_{4}}$ for constants k_{1}, k_{2}, k_{3} and k_{4} are $O(\log n)$
- For this reason, we don't really "care" about the base of the log function when we do asymptotic notation
- Thus, binary search, ternary search and k-ary search all take $O(\log n)$ time

Important Note

- $\log ^{2} n=(\log n)^{2}$
- $\log ^{2} n$ is $O\left(\log ^{2} n\right)$, not $O(\log n)$
- This is true since $\log ^{2} n$ grows asymptotically faster than $\log n$
- All log functions of form $k_{1} \log _{k_{3}}^{k_{2}} k_{4} * n^{k_{5}}$ for constants k_{1}, k_{2}, k_{3}, k_{4} and k_{5} are $O\left(\log ^{k_{2}} n\right)$

At Home Exercise

Simplify and give O notation for the following functions. In the big-O notation, write all logs base 2 :

- $\log 10 n^{2}$
- $\log ^{2} n^{4}$
- $2^{\log _{4} n}$
- $\log \log \sqrt{n}$

Does big-O really matter?

Let $n=100000$ and $\Delta t=1 \mu \mathrm{~s}$

$\log n$	$1.7 * 10^{-5}$ seconds
\sqrt{n}	$3.2 * 10^{-4}$ seconds
n	.1 seconds
$n \log n$	1.2 seconds
$n \sqrt{n}$	31.6 seconds
n^{2}	2.8 hours
n^{3}	31.7 years
2^{n}	>1 century

(from Classic Data Structures in C++ by Timothy Budd)

Recurrence Relations

"Oh how should I not lust after eternity and after the nuptial ring of rings, the ring of recurrence" - Friedrich Nietzsche, Thus Spoke Zarathustra

- Getting the run times of recursive algorithms can be challenging
- Consider an algorithm for binary search (next slide)
- Let $T(n)$ be the run time of this algorithm on an array of size n
- Then we can write $T(1)=1, T(n)=T(n / 2)+1$

Alg: Binary Search

```
bool BinarySearch (int arr[], int s, int e, int key){
    if (e-s<=0) return false;
    int mid = (e+s)/2;
    if (key==arr[mid]){
        return true;
    }else if (key < arr[mid]){
        return BinarySearch (arr,s,mid,key);}
    else{
        return BinarySearch (arr,mid,e,key)}
}
```


Recurrence Relations

- $T(n)=T(n / 2)+1$ is an example of a recurrence relation
- A Recurrence Relation is any equation for a function T, where T appears on both the left and right sides of the equation.
- We always want to "solve" these recurrence relation by getting an equation for T, where T appears on just the left side of the equation

Recurrence Relations

- Whenever we analyze the run time of a recursive algorithm, we will first get a recurrence relation
- To get the actual run time, we need to solve the recurrence relation

Substitution Method

- One way to solve recurrences is the substitution method aka "guess and check"
- What we do is make a good guess for the solution to $T(n)$, and then try to prove this is the solution by induction

Example

- Let's guess that the solution to $T(n)=T(n / 2)+1, T(1)=1$ is $T(n)=O(\log n)$
- In other words, $T(n) \leq c \log n$ for all $n \geq n_{0}$, for some positive constants c, n_{0}
- We can prove that $T(n) \leq c \log n$ is true by plugging back into the recurrence

Proof

We prove this by induction:

- B.C.: $T(2)=2 \leq c \log 2$ provided that $c \geq 2$
- I.H.: For all $j<n, T(j) \leq c \log (j)$
- I.S.:

$$
\begin{aligned}
T(n) & =T(n / 2)+1 \\
& \leq(c \log (n / 2))+1 \\
& =c(\log n-\log 2)+1 \\
& =c \log n-c+1 \\
& \leq c \log n
\end{aligned}
$$

First step holds by IH. Last step holds for all $n>0$ if $c \geq 1$. Thus, entire proof holds if $n \geq 2$ and $c \geq 2$.

Recurrences and Induction are closely related:

- To find a solution to $f(n)$, solve a recurrence
- To prove that a solution for $f(n)$ is correct, use induction

For both recurrences and induction, we always solve a big problem by reducing it to smaller problems!

Some Examples

- The next several problems can be attacked by induction/recurrences
- For each problem, we'll need to reduce it to smaller problems
- Question: How can we reduce each problem to a smaller subproblem?

Sum Problem

- $f(n)$ is the sum of the integers $1, \ldots, n$

Tree Problem

- $f(n)$ is the maximum number of leaf nodes in a binary tree of height n

Recall:

- In a binary tree, each node has at most two children
- A leaf node is a node with no children
- The height of a tree is the length of the longest path from the root to a leaf node.

Binary Search Problem

- $f(n)$ is the maximum number of queries that need to be made for binary search on a sorted array of size n.

Dominoes Problem

- $f(n)$ is the number of ways to tile a 2 by n rectangle with dominoes (a domino is a 2 by 1 rectangle)

Simpler Subproblems

- Sum Problem: What is the sum of all numbers between 1 and $n-1$ (i.e. $f(n-1)$)?
- Tree Problem: What is the maximum number of leaf nodes in a binary tree of height $n-1$? (i.e. $f(n-1)$)
- Binary Search Problem: What is the maximum number of queries that need to be made for binary search on a sorted array of size $n / 2$? (i.e. $f(n / 2)$)
- Dominoes problem: What is the number of ways to tile a 2 by $n-1$ rectangle with dominoes? What is the number of ways to tile a 2 by $n-2$ rectangle with dominoes? (i.e. $f(n-1), f(n-2))$

Recurrences

- Sum Problem: $f(n)=f(n-1)+n, f(1)=1$
- Tree Problem: $f(n)=2 * f(n-1), f(0)=1$
- Binary Search Problem: $f(n)=f(n / 2)+1, f(2)=1$
- Dominoes problem: $f(n)=f(n-1)+f(n-2), f(1)=1$, $f(2)=2$

Guesses

- Sum Problem: $f(n)=(n+1) n / 2$
- Tree Problem: $f(n)=2^{n}$
- Binary Search Problem: $f(n)=\log n$
- Dominoes problem: $f(n)=\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\frac{1}{\sqrt{5}}\left(\frac{1-\sqrt{5}}{2}\right)^{n}$

Inductive Proofs

"Trying is the first step to failure" - Homer Simpson

- Now that we've made these guesses, we can try using induction to prove they're correct (the substitution method)
- We'll give inductive proofs that these guesses are correct for the first three problems

Sum Problem

- Want to show that $f(n)=(n+1) n / 2$.
- Prove by induction on n
- Base case: $f(1)=2 * 1 / 2=1$
- Inductive hypothesis: for all $j<n, f(j)=(j+1) j / 2$
- Inductive step:

$$
\begin{aligned}
f(n) & =f(n-1)+n \\
& =n(n-1) / 2+n \\
& =(n+1) n / 2
\end{aligned}
$$

Where the first step holds by IH.

Tree Problem

- Want to show that $f(n)=2^{n}$.
- Prove by induction on n
- Base case: $f(0)=2^{0}=1$
- Inductive hypothesis: for all $j<n, f(j)=2^{j}$
- Inductive step:

$$
\begin{aligned}
f(n) & =2 * f(n-1) \\
& =2 *\left(2^{n-1}\right) \\
& =2^{n}
\end{aligned}
$$

Where the first step holds by IH.

Binary Search Problem

- Want to show that $f(n)=\log n$. (assume n is a power of 2)
- Prove by induction on n
- Base case: $f(2)=\log 2=1$
- Inductive hypothesis: for all $j<n, f(j)=\log j$
- Inductive step:

$$
\begin{aligned}
f(n) & =f(n / 2)+1 \\
& =\log n / 2+1 \\
& =\log n-\log 2+1 \\
& =\log n
\end{aligned}
$$

Where the first step holds by IH.

In Class Exercise

- Consider the recurrence $f(n)=2 f(n / 2)+1, f(1)=1$
- Guess that $f(n) \leq c n-1$:
- Q1: Show the base case - for what values of c does it hold?
- Q2: What is the inductive hypothesis?
- Q3: Show the inductive step.
- Read Chapter 3 and 4 in the text
- Work on Homework 1

