
CS 561, Lecture 9, Minimum Spanning

Trees

Jared Saia
Universit y of New M exico

Today’s Outline

• M inim um Spanning T rees
• Safe Edge T heorem
• K ruskal and Prim Õs algorit hm s
• Graph Represent at ion

1

Graph Definition

• A graph is a pair of set s (V,E) .
• W e call V t he vert ices of t he graph
• E is a set of vert ex pairs which we call t he edges of t he

graph.
• In an undirected graph, t he edges are unordered pairs of

vert ices and in a directed graph, t he edges are ordered pairs.
• W e assum e t hat t here is never an edge from a vert ex t o it self

(no self - loops) and t hat t here is at m ost one edge from any
vert ex t o any ot her (no m ult i-edges)

• |V | is t he num ber of vert ices in t he graph and |E| is t he
num ber of edges

2

Graph Defns

• A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V

and E′ ⊆ E

• If (u, v) is an edge in a graph, t hen u is a neighbor of v

• For a vert ex v, t he degree of v, deg(v) , is equal t o t he num ber
of neighbors of v

• A walk is a sequence of edges, where each successive pair of
edges shares a vert ex.

• A path is a walk, where t he vert ices in t he sequence are all
dist inct .

• A graph is connected if t here is a pat h from any vert ex t o
any ot her vert ex

• A disconnect ed graph consist s of several connected compo-

nents which are m axim al connect ed subgraphs
• T wo vert ices are in t he sam e com ponent if and only if t here

is a pat h between t hem

3

Graph Defns

For undirect ed graphs:

• A cycle is a walk t hat st art s and ends at t he sam e vert ex and
where all vert ices except t he last visit ed are unique.

• A graph is acyclic if no subgraph is a cycle. Acyclic graphs
are also called forests

• A tree is a connect ed acyclic graph. It Õs also a connect ed
com ponent of a forest .

• A spanning tree of a graph G is a subgraph t hat is a t ree
and also cont ains every vert ex of G. A graph can only have
a spanning t ree if it Õs connect ed

• A spanning forest of G is a collect ion of spanning t rees, one
for each connect ed com ponent of G

4

Minimum Spanning Tree Problem

• Suppose we are given a connect ed, undirect ed weighted graph
• T hat is a graph G = (V,E) t oget her wit h a funct ion w : E →

R t hat assigns a weight w(e) t o each edge e. (W e assum e
t he weight s are real num bers)

• O ur t ask is t o Þnd t he minimum spanning tree of G, i.e., t he
spanning t ree T m inim izing t he funct ion

w(T) =
!

e∈T
w(e)

5

Example

Graph Defns

• A cycle is a path that starts and ends at the same vertex
and has at least one edge

• A graph is acyclic if no subgraph is a cycle. Acyclic graphs
are also called forests

• A tree is a connected acyclic graph. It’s also a connected
component of a forest.

• A spanning tree of a graph G is a subgraph that is a tree
and also contains every vertex of G. A graph can only have
a spanning tree if it’s connected

• A spanning forest of G is a collection of spanning trees, one
for each connected component of G

4

Minimum Spanning Tree Problem

• Suppose we are given a connected, undirected weighted graph
• That is a graph G = (V, E) together with a function w : E →

R that assigns a weight w(e) to each edge e. (We assume
the weights are real numbers)

• Our task is to find the minimum spanning tree of G, i.e., the
spanning tree T minimizing the function

w(T) =
∑

e∈T

w(e)

5

Example

8 5

10

2 3

18 16

12

14

30

4 26

A weighted graph and its minimum spanning tree

6

Applications

• Creating an inexpensive road network to connect cities
• Wiring up homes for phone service with the smallest amount

of phone wire
• Finding a good approximation to the TSP problem

7

A weight ed graph and it s m inim um spanning t ree

6

Applications

• Creat ing an inexpensive road network t o connect cit ies
• W iring up hom es for phone service wit h t he sm allest am ount

of wire
• F inding a good approxim at ion t o t he T SP problem

7

Generic MST Algorithm

Generic-MST(G,w){

A = {};

while (A does not form a spanning tree){

find an edge (u,v) that is safe for A;

A = A union (u,v);

}

return A;

}

8

Safe edges - Definition

• L et A be any set of edges in G t hat is a subset of som e M ST
of G

• An edge e is saf e for A if A ∪ {e} is also a subset of a M ST .

9

Safe edges

• A cut (S, V − S) of a graph G = (V,E) is a part it ion of V

• An edge (u, v) crosses t he cut (S, V −S) if one of it s endpoint s
is in S and t he ot her is in V − S

• A cut respects a set of edges A if no edge in A crosses t he
cut .

• An edge is a light edge crossing a cut if it s weight is t he
m inim um of any edge crossing t he cut

10

Theorem

L et G = (V,E) be a connect ed, undirect ed graph wit h a real-
valued weight funct ion w deÞned on E. L et A be a subset of
E t hat is included in som e m inim um spanning t ree for G. L et
(S, V − S) be any cut of G t hat respect s A and let (u, v) be a
light edge crossing (S, V − S) . T hen edge (u, v) is safe for A

11

Proof

• L et T be a M ST t hat includes som e set of edges A

• Assum e t hat T does not cont ain t he light edge e = (u, v)
• Since T is connect ed, it cont ains a unique pat h from u t o v

and at least one edge e′ on t his pat h crosses t he cut t hat
respect s A

• Not e t hat w(e) ≤ w(e′) by assum pt ion
• Rem oving e′ f rom t he M ST and adding e gives us a new

spanning t ree T ′

• T ′ has t ot al weight no m ore t han T and t his T ′ m ust also be
a M ST . Q ED .

12

Example

Proof

• Let T be a minimum spanning tree that includes some set of
edges A

• Assume that T does not contain the light edge e = (u, v)
• Since T is connected, it contains a unique path from u to v,

and at least one edge e′ on this path crosses the cut
• Note that w(e) ≤ w(e′) by assumption
• Removing e′ from the minimum spanning tree and adding e

gives us a new spanning tree, T ′

• T ′ has total weight no more than T .
• Thus the edge e is in fact contained in some MST.

12

Example

u
v

e

e’

Proving that every safe edge is some minimum spanning tree.

13

Corollary

Let G = (V, E) be a connected, undirected graph with a real-
valued weight function w defined on E. Let A be a subset of
E that is included in some minimum spanning tree for G, and
let C = (Vc, Ec) be a connected component (tree) in the forest
GA = (V, A). If (u, v) is a light edge connecting C to some other
component in GA, then (u, v) is safe for A

Proof: The cut (VC, V −VC) respects A, and (u, v) is a light edge
for this cut. Therefore (u, v) is safe for A.

14

Two MST algorithms

• There are two major MST algorithms, Kruskal’s and Prim’s
• In Kruskal’s algorithm, the set A is a forest. The safe edge

added to A is always a least-weighted edge in the graph that
connects two distinct components

• In Prim’s algorithm, the set A forms a single tree. The safe
edge added to A is always a least-weighted edge connecting
the tree to a vertex not in the tree

15

Proof t hat every safe edge is in som e M ST . T he red edges are
t he set A.

13

Corollary

Let G = (V,E) be a connected, undirected graph with a real-

valued weight function w defined on E. Let A be a subset of

E that is included in some minimum spanning tree for G, and

let C = (Vc, Ec) be a connected component (tree) in the forest

GA = (V,A) . If (u, v) is a light edge connecting C to some other

component in GA, then (u, v) is safe for A

Proof : T he cut (VC, V −VC) respect s A, and (u, v) is a light edge
for t his cut . T herefore (u, v) is safe for A.

14

Two MST algorithms

• T here are two m ajor M ST algorit hm s, K ruskalÕs and Prim Õs
• In K ruskalÕs algorit hm , t he set A is a forest . T he safe edge

added t o A is always a least -weight ed edge in t he graph t hat
connect s two dist inct com ponent s

• In Prim Õs algorit hm , t he set A form s a single t ree. T he safe
edge added t o A is always a least -weight ed edge connect ing
t he t ree t o a vert ex not in t he t ree

15

Kruskal’s Algorithm

• Q : In K ruskalÕs algorit hm , how do we det erm ine whet her or
not an edge connect s two dist inct connect ed com ponent s?

• A: W e need som e way t o keep t rack of t he set s of vert ices
t hat are in each connect ed com ponent s and a way t o t ake
t he union of t hese set s when adding a new edge t o A m erges
two connect ed com ponent s

• W hat we need is t he dat a st ruct ure for m aint aining disjoint
set s (aka Union-F ind) t hat we discussed last week

16

Kruskal’s Algorithm

MST-Kruskal(G,w){

for (each vertex v in V)

Make-Set(v);

sort the edges of E into nondecreasing order by weight;

for (each edge (u,v) in E taken in nondecreasing order){

if(Find-Set(u)!=Find-Set(v)){

A = A union (u,v);

Set-Union(u,v);

}

}

return A;

}

17

Example RunKr uskalÕsA lgorithm

¥ Q: In Kr uskalÕsalgorith m, how do we dete rmi ne wh eth er or
not an edge connects two disti nct connecte d comp onents?

¥ A : W e need some way to keep tr ack of th e sets of verti ces
th at are in each connecte d comp onents and a way to tak e
th e union of th ese sets wh en adding a new edge to A merges
two connecte d comp onents

¥ W hat we need is th e data str uctu re fo r mai ntai ning disjoint
sets (ak a Un ion-F ind) th at we discussed last week

16

Kr uskalÕsA lgorithm

MST-Kruskal(G,w){

for (each vertex v in V)

Make-Set(v);

sort the edges of E into nondecreasing order by weight;

for (each edge (u,v) in E taken in nondecreasing order){

if(Find-Set(u)!=Find-Set(v)){

A = A union (u,v);

Set-Union(u,v);

}

}

return A;

}

17

Exampl e Run

8 5

10

2 3

18 16

12

14

30

4 26

8 5

10

3

18 16

12

14

30

4 26

8 5

10

18 16

12

14

30

4 26

8 5

10

18 16

12

14

30

26

18

8

10

16

12

14

30

26

10

16

12

14

30

26

16

12

14

30

26

181816

14

30

26

1816

30

26

18

30

26

18

30

26

30

Kruskal’s algorithm run on the example graph. Thick edges are in A.
Dashed edges are useless.

18

Correctne ss?

¥ Correctn ess of Kr uskalÕsalgorith m fo llows imme diate ly fr om
th e corollary

¥ Each ti me we add th e lighte st weight edge th at connects two
connecte d comp onents, hence th is edge mu st be safe fo r A

¥ T his imp lies th at at th e end of th e algorith , A wi ll be a MST

19

Kruskal’s algorithm run on the example graph. Thick edges are in A.
Dashed edges are useless.

18

Correctness?

• Correct ness of K ruskalÕs algorit hm follows im m ediat ely f rom
t he corollary

• Each t im e we add t he light est weight edge t hat connect s two
connect ed com ponent s, hence t his edge m ust be safe for A

• T his im plies t hat at t he end of t he algorit h, A will be a M ST

19

Runtime?

• T he runt im e for K ruskalÕs alg. will depend on t he im plem en-
t at ion of t he disjoint -set dat a st ruct ure. W eÕll assum e t he im -
plem ent at ion wit h union-by-rank and pat h-com pression which
we showed has am ort ized cost of log∗ n

20

Runtime?

• T im e t o sort t he edges is O(|E| log |E|)
• T ot al am ount of t im e for t he |V | calls t o M ake-Set ; and

O(|E|) calls t o F ind-Set and Set -Union is O((|V |+ |E|) log∗ |V |)
• Since G is connect ed, |E| ≥ |V |−1 and so O((|V |+ |E|) log∗ |V |) =

O(|E| log∗ |V |) = O(|E| log |E|)
• T ot al am ount of addit ional work done in t he for loop is just

O(E)
• T hus t ot al runt im e of t he algorit hm is O(|E| log |E|)
• Since |E| ≤ |V |2, we can rewrit e t his as O(|E| log |V |)

21

Prim’s Algorithm

• In Prim Õs algorit hm , t he set A m aint ained by t he algorit hm
form s a single t ree.

• T he t ree st art s f rom an arbit rary root vert ex and grows unt il
it spans all t he vert ices in V

• At each st ep, a light edge is added t o t he t ree A which
connect s A t o an isolat ed vert ex of GA = (V,A)

• B y our Corollary, t his rule adds only safe edges t o A, so when
t he algorit hm t erm inat es, it w ill ret urn a M ST

22

Example Run

Runtime?

• The runtime fo the Kruskal’s alg. will depend on the imple-
mentation of the disjoint-set data structure. We’ll assume
the implementation with union-by-rank and path-compression
which we showed has amortized cost of log∗ n

20

Runtime?

• Time to sort the edges is O(|E| log |E|)
• Total amount of time for the |V | Make-Sets and up to |E|

Set-Unions is O((|V | + |E|) log∗ |V |)
• Since G is connected, |E| ≥ |V |−1 and so O((|V |+|E|) log∗ |V |) =

O(|E| log∗ |V |) = O(|E| log |E|)
• Total amount of additional work done in the for loop is just

O(E)
• Thus total runtime of the algorithm is O(|E| log |E|)
• Since |E| ≤ |V |2, we can rewrite this as O(|E| log |V |)

21

Prim’s Algorithm

• In Prim’s algorithm, the set A maintained by the algorithm
forms a single tree.

• The tree starts from an arbitrary root vertex and grows until
it spans all the vertices in V

• At each step, a light edge is added to the tree A which
connects A to an isolated vertex of GA = (V, A)

• By our Corollary, this rule adds only safe edges to A, so when
the algorithm terminates, it will return a MST

22

Example Run

8 5

10

2 3

18 16

12

14

30

4 26

18

8 5

10

2 3

16

12

14

30

26

8 5

10

2 3

18 16

30

26

8 5

10

3

16

30

26

8 5

16

30

26

16

30

26

Prim’s algorithm run on the example graph, starting with the
bottom vertex.

At each stage, thick edges are in A, an arrow points along A’s
safe edge, and dashed edges are useless.

23

Prim Õs algorit hm run on t he exam ple graph, st art ing wit h t he
bot t om vert ex.

At each st age, t hick edges are in A, an arrow point s along AÕs
safe edge, and dashed edges are useless.

23

An Implementation

• T o im plem ent Prim Õs algorit hm , we keep all edges adjacent
t o A in a heap

• W hen we pull t he m inim um -weight edge o! t he heap, we
Þrst check t o see if bot h it s endpoint s are in A

• If not , we add t he edge t o A and t hen add t he neighboring
edges t o t he heap

• If we im plem ent Prim Õs algorit hm t his way, it s running t im e
is O(|E| log |E|) = O(|E| log |V |)

• However, we can do bet t er

24

Prim’s Algorithm

• W e can speed t hings up by not icing t hat t he algorit hm visit s
each vert ex only once

• Rat her t han keeping t he edges in t he heap, we will keep a
heap of vert ices, where t he key of each vert ex v is t he weight
of t he m inim um -weight edge between v and A (or inÞnit y if
t here is no such edge)

• Each t im e we add a new edge t o A, we m ay need t o decrease
t he key of som e neighboring vert ices

25

Prim’s

W e will break up t he algorit hm int o two part s, Prim -Init and
Prim -L oop

Prim(V,E,s){

Prim-Init(V,E,s);

Prim-Loop(V,E,s);

}

26

Prim-Init

Prim-Init(V,E,s){

for each vertex v in V - {s}{

if ((v,s) is in E){

edge(v) = (v,s);

key(v) = w((v,s));

}else{

edge(v) = NULL;

key(v) = infinity;

}

Heap-Insert(v);

}

Heap-Insert(s);

}

27

Prim-Loop

Prim-Loop(V,E,s){

A = {};

for (i = 1 to |V| - 1){

v = Heap-ExtractMin();

add edge(v) to A;

for (each edge (u,v) in E){

if ((u,v) is not in A AND key(u) > w(u,v)){

edge(u) = (u,v);

Heap-DecreaseKey(u,w(u,v));

}

}

}

return A;

}

28

Runtime?

• T he runt im e of Prim Õs is dom inat ed by t he cost of t he heap
operat ions Insert , Ext ract M in and D ecreaseK ey

• Insert and Ext ract M in are each called O(|V |) t im es
• D ecreaseK ey is called O(|E|) t im es, at m ost twice for each

edge
• If we use a Fibonacci Heap, t he am ort ized cost s of Insert and

D ecreaseK ey is O(1) and t he am ort ized cost of Ext ract M in
is O(log |V |)

• T hus t he overall run t im e of Prim Õs is O(|E| + |V | log |V |)
• T his is fast er t han K ruskalÕs unless E = O(|V |)

29

Note

• T his analysis assum es t hat it is fast t o Þnd all t he edges t hat
are incident t o a given vert ex

• W e have not yet discussed how we can do t his
• T his brings us t o a discussion of how t o represent a graph in

a com put er

30

Graph Representation

T here are two com m on dat a st ruct ures used t o explicit y repre-
sent graphs

• Adjacency M at rices
• Adjacency L ist s

31

Adjacency Matrix

• T he adjacency m at rix of a graph G is a |V | × |V | m at rix of
0Õs and 1Õs

• For an adjacency m at rix A, t he ent ry A[i, j] is 1 if (i, j) ∈ E

and 0 ot herwise
• For undirect d graphs, t he adjacency m at rix is always sym-

metric : A[i, j] = A[j, i]. A lso t he diagonal elem ent s A[i, i] are
all zeros

32

Example Graph

Adjacency Matrix

• The adjacency matrix of a graph G is a |V | × |V | matrix of
0’s and 1’s

• For an adjacency matrix A, the entry A[i, j] is 1 if (i, j) ∈ E

and 0 otherwise
• For undirectd graphs, the adjacency matrix is always sym-

metric: A[i, j] = A[j, i]. Also the diagonal elements A[i, i] are
all zeros

32

Example Graph

a

b

e

d

f g

h

ic

33

Example Representations

a b c d e f g h i
a 011000000
b 101110000
c 110110000
d 011011000
e 011101000
f 000110000
g 000000010
h 000000101
i 000000110

a

b

c

d

e

f

g

h

i

d

d

d

e

e

e

f

f

a

b

b

b

a

d

g

g

h

c

c

c

c

b

e

h

i

i

Adjacency matrix and adjacency list representations for the
example graph.

34

Adjacency Matrix

• Given an adjacency matrix, we can decide in Θ(1) time
whether two vertices are connected by an edge.

• We can also list all the neighbors of a vertex in Θ(|V |) time
by scanning the row corresponding to that vertex

• This is optimal in the worst case, however if a vertex has few
neighbors, we still need to examine every entry in the row to
find them all

• Also, adjacency matrices require Θ(|V |2) space, regardless of
how many edges the graph has, so it is only space efficient
for very dense graphs

35

33

Example Representations

a b c d e f g h i
a 0 1 1 0 0 0 0 0 0
b 1 0 1 1 1 0 0 0 0
c 1 1 0 1 1 0 0 0 0
d 0 1 1 0 1 1 0 0 0
e 0 1 1 1 0 1 0 0 0
f 0 0 0 1 1 0 0 0 0
g 0 0 0 0 0 0 0 1 0
h 0 0 0 0 0 0 1 0 1
i 0 0 0 0 0 0 1 1 0

Adjacency m at rix and adjacency list represent at ions for t he
exam ple graph.

34

Adjacency Matrix

• Given an adjacency m at rix, we can decide in " (1) t im e
whet her two vert ices are connect ed by an edge.

• W e can also list all t he neighbors of a vert ex in " (|V |) t im e
by scanning t he row corresponding t o t hat vert ex

• T his is opt im al in t he worst case, however if a vert ex has few
neighbors, we st ill need t o exam ine every ent ry in t he row t o
Þnd t hem all

• A lso, adjacency m at rices require " (|V |2) space, regardless of
how m any edges t he graph has, so it is only space e# cient
for very dense graphs

35

Adjacency Lists

• For sparse graphs Ñ graphs wit h relat ively few edges Ñ
weÕre bet t er o! wit h adjacency list s

• An adjacency list is an array of linked list s, one list per vert ex
• Each linked list st ores t he neighbors of t he corresponding

vert ex

36

Adjacency Lists

• T he t ot al space required for an adjacency list is O(|V | + |E|)
• L ist ing all t he neighbors of a node v t akes O(1 + deg(v)) t im e
• W e can det erm ine if (u, v) is an edge in O(1 + deg(u)) t im e

by scanning t he neighbor list of u

• Not e t hat we can speed t hings up by st oring t he neighbors
of a node not in list s but rat her in hash t ables

• T hen we can det erm ine if an edge is in t he graph in expect ed
O(1) t im e and st ill list all t he neighbors of a node v in O(1 +
deg(v)) t im e

37

