CS 561, NP-Hardness and Approximation Algorithms

Jared Saia
University of New Mexico
Today’s Outline

- P, NP and NP-Hardness
- Reductions
- Approximation Algorithms
Efficient Algorithms

- Q: What is a minimum requirement for an algorithm to be efficient?
- A: A long time ago, theoretical computer scientists decided that a minimum requirement of any efficient algorithm is that it runs in polynomial time: $O(n^c)$ for some constant c
- People soon recognized that not all problems can be solved in polynomial time but they had a hard time figuring out exactly which ones could and which ones couldn’t
NP-Hard Problems

• Q: How to determine those problems which can be solved in polynomial time and those which cannot
• Again a long time ago, Steve Cook and Dick Karp and others defined the class of NP-hard problems
• Most people believe that NP-Hard problems cannot be solved in polynomial time, even though so far nobody has proven a super-polynomial lower bound.
• What we do know is that if any NP-Hard problem can be solved in polynomial time, they all can be solved in polynomial time.
Circuit Satisfiability

- **Circuit satisfiability** is a good example of a problem that we don’t know how to solve in polynomial time
- In this problem, the input is a *boolean circuit*: a collection of and, or, and not gates connected by wires
- We’ll assume there are no loops in the circuit (so no delay lines or flip-flops)
Circuit Satisfiability

- The input to the circuit is a set of m boolean (true/false) values $x_1, \ldots x_m$
- The output of the circuit is a single boolean value
- Given specific input values, we can calculate the output in polynomial time using depth-first search and evaluating the output of each gate in constant time
Circuit Satisfiability

- The circuit satisfiability problem asks, given a circuit, whether there is an input that makes the circuit output **True**
- In other words, does the circuit always output false for any collection of inputs
- Nobody knows how to solve this problem faster than just trying all 2^m possible inputs to the circuit but this requires exponential time
- On the other hand nobody has ever proven that this is the best we can do!
Example

An and gate, an or gate, and a not gate.

A boolean circuit. Inputs enter from the left, and the output leaves to the right.
Classes of Problems

We can characterize many problems into three classes:

- **P** is the set of yes/no problems that can be solved in polynomial time. Intuitively P is the set of problems that can be solved “quickly”
- **NP** is the set of yes/no problems with the following property: If the answer is yes, then there is a *proof* of this fact that can be checked in polynomial time
- **co-NP** is the set of yes/no problems with the following property: If the answer is no, then there is a *proof* of this fact that can be checked in polynomial time
- **NP** is the set of yes/no problems with the following property: If the answer is yes, then there is a *proof* of this fact that can be checked in polynomial time.
- Intuitively NP is the set of problems where we can verify a *Yes* answer quickly if we have a solution in front of us.
- For example, circuit satisfiability is in NP since if the answer is yes, then any set of \(m \) input values that produces the *True* output is a proof of this fact (and we can check this proof in polynomial time).
P, NP, and co-NP

- If a problem is in P, then it is also in NP — to verify that the answer is yes in polynomial time, we can just throw away the proof and recompute the answer from scratch.
- Similarly, any problem in P is also in co-NP.
- In this sense, problems in P can only be easier than problems in NP and co-NP.
Examples

- The problem: “For a certain circuit and a set of inputs, is the output True?” is in P (and in NP and co-NP)
- The problem: “Does a certain circuit have an input that makes the output True?” is in NP
- The problem: “Does a certain circuit always have output true for any input?” is in co-NP
Most problems we’ve seen in this class so far are in P including:

- “Does there exist a path of distance $\leq d$ from u to v in the graph G?”
- “Does there exist a minimum spanning tree for a graph G that has cost $\leq c$?”
- “Does there exist an alignment of strings s_1 and s_2 which has cost $\leq c$?”
NP Examples

There are also several problems that are in NP (but probably not in P) including:

- **Circuit Satisfiability**
- **Coloring**: “Can we color the vertices of a graph G with c colors such that every edge has two different colors at its endpoints (G and c are inputs to the problem)
- **Clique**: “Is there a clique of size k in a graph G?” (G and k are inputs to the problem)
- **Hamiltonian Path**: “Does there exist a path for a graph G that visits every vertex exactly once?”
The 1 Million Question

- The most important question in computer science (and one of the most important in mathematics) is: “Does $P=NP$?”
- Nobody knows.
- Intuitively, it seems obvious that $P \neq NP$; in this class you’ve seen that some problems can be very difficult to solve, even though the solutions are obvious once you see them.
- But nobody has proven that $P \neq NP$
NP and co-NP

- Notice that the definition of NP (and co-NP) is not symmetric.
- Just because we can verify every yes answer quickly doesn’t mean that we can check no answers quickly.
- For example, as far as we know, there is no short proof that a boolean circuit is *not* satisfiable.
- In other words, we know that Circuit Satisfiability is in NP but we don’t know if its in co-NP.
Conjectures

- We conjecture that $P \neq NP$ and that $NP \neq co-NP$
- Here’s a picture of what we *think* the world looks like:
• A problem Π is **NP-hard** if a polynomial-time algorithm for Π would imply a polynomial-time algorithm for every problem in NP

• In other words: Π is NP-hard means that if Π can be solved in polynomial time then $P=NP$

• In other words: if we can solve one particular NP-hard problem quickly, then we can quickly solve any problem whose solution is quick to check (using the solution to that one special problem as a subroutine)

• If you tell your boss that a problem is NP-hard, it’s like saying: “Not only can’t I find an efficient solution to this problem but neither can all these other very famous people.” (you could then seek to find an approximation algorithm for your problem)
NP-Complete

- A problem is *NP-Easy* if it is in NP
- A problem is *NP-Complete* if it is NP-Hard and NP-Easy
- In other words, a problem is NP-Complete if it is in NP but is at least as hard as all other problems in NP.
- If anyone finds a polynomial-time algorithm for even one NP-complete problem, then that would imply a polynomial-time algorithm for every NP-Complete problem
- *Thousands* of problems have been shown to be NP-Complete, so a polynomial-time algorithm for one (i.e. all) of them is incredibly unlikely
Example

A more detailed picture of what we think the world looks like.
Proving NP-Hardness

- In 1971, Steve Cook proved the following theorem: **Circuit Satisfiability is NP-Hard**
- Thus, one way to show that a problem A is NP-Hard is to show that if you can solve it in polynomial time, then you can solve the Circuit Satisfiability problem in polynomial time.
- This is called a *reduction*. We say that we *reduce* Circuit Satisfiability to problem A.
- This implies that problem A is “as difficult as” Circuit Satisfiability.
• Consider the *formula satisfiability* problem (aka *SAT*)
• The input to SAT is a boolean formula like

\[(a \lor b \lor c \lor \overline{d}) \iff ((b \land \overline{c}) \lor (\overline{a} \Rightarrow d) \lor (c \neq a \land b)),\]

• The question is whether it is possible to assign boolean values to the variables \(a, b, c, \ldots\) so that the formula evaluates to TRUE
• To show that SAT is NP-Hard, we need to show that we can use a solution to SAT to solve Circuit Satisfiability
The Reduction

- Given a boolean circuit, we can transform it into a boolean formula by creating new output variables for each gate and then just writing down the list of gates separated by AND.
- This simple algorithm is the reduction.
- For example, we can transform the example circuit into a formula as follows:
Example

\[(y_1 = x_1 \land x_4) \land (y_2 = \overline{x_4}) \land (y_3 = x_3 \land y_2) \land (y_4 = y_1 \lor x_2) \land (y_5 = \overline{x_2}) \land (y_6 = \overline{x_5}) \land (y_7 = y_3 \lor y_5) \land (y_8 = y_4 \land y_7 \land y_6) \land y_8\]

A boolean circuit with gate variables added, and an equivalent boolean formula.
Reduction Picture

boolean circuit $\xrightarrow{O(n)}$ boolean formula

SAT

True or False $\xleftarrow{\text{trivial}}$ True or False
Reduction

- The original circuit is satisifiable iff the resulting formula is satisifiable
- We can transform any boolean circuit into a formula in linear time using DFS and the size of the resulting formula is only a constant factor larger than the size of the circuit
- Thus we’ve shown that if we had a polynomial-time algorithm for SAT, then we’d have a polynomial-time algorithm for Circuit Satisfiability (and this would imply that $P=NP$)
- This means that SAT is NP-Hard
Showing NP-Completeness

- We’ve shown that SAT is NP-Hard, to show that it is NP-Complete, we now must also show that it is in NP
- In other words, we must show that if the given formula is satisfiable, then there is a proof of this fact that can be checked in polynomial time
- To prove that a boolean formula is satisfiable, we only have to specify an assignment to the variables that makes the formula true (this is the “proof” that the formula is true)
- Given this assignment, we can check it in linear time just by reading the formula from left to right, evaluating as we go
- So we’ve shown that SAT is NP-Hard and that SAT is in NP, thus SAT is NP-Complete
Take Away

- In general to show a problem is NP-Complete, we first show that it is in NP and then show that it is NP-Hard.
- To show that a problem is in NP, we just show that when the problem has a “yes” answer, there is a proof of this fact that can be checked in polynomial time (this is usually easy).
- To show that a problem is NP-Hard, we show that if we could solve it in polynomial time, then we could solve some other NP-Hard problem in polynomial time (this is called a reduction).
3-SAT

- A boolean formula is in *conjunctive normal form* (CNF) if it is a conjunction (and) of several *clauses*, each of which is the disjunction (or) of several *literals*, each of which is either a variable or its negation. For example:

\[
\text{clause} \equiv (a \lor b \lor c \lor d) \land (b \lor \bar{c} \lor \bar{d}) \land (\bar{a} \lor c \lor d) \land (a \lor \bar{b})
\]

- A 3CNF formula is a CNF formula with exactly three literals per clause

- The 3-SAT problem is just: “Is there any assignment of variables to a 3CNF formula that makes the formula evaluate to true?”
3-SAT

- 3-SAT is just a restricted version of SAT
- Surprisingly, 3-SAT also turns out to be NP-Complete
- 3-SAT is very useful in proving NP-Hardness results for other problems, we’ll see how it can be used to show that CLIQUE is NP-Hard
SAT to 3-SAT

- To convert an arbitrary formula into 3-SAT form, need to deal with:
- Clauses with just 1 or 2 literals
 - Replicate literals to bring the number up to 3: \((\neg x_1 \lor x_5) \rightarrow (\neg x_1 \lor \neg x_1 \lor x_5)\)
- Clauses with 4 or more literals
 - Chaining: split into multiple clauses, using new "linking" literals
 - E.g.: \((x_1 \lor x_2 \lor x_3 \lor x_4) \rightarrow (x_1 \lor x_2 \lor z) \land (\neg z \lor x_3 \lor x_4)\)
 - Replace \((x_1 \lor \ldots \lor x_k)\) with \(k - 2\) new clauses \((x_1 \lor x_2 \lor z_1) \land (\neg z_1 \lor x_3 \lor z_2) \land (\neg z_2 \lor x_4 \lor z_3) \land \ldots (\neg z_{k-1} \lor x_{k-1} \lor x_k)\)
- Can do all this in polynomial time
The problem CLIQUE asks “Is there a clique of size k in a graph G?”

Example graph with clique of size 4:

We’ll show that Clique is NP-Hard using a reduction from 3-SAT. (the proof that Clique is in NP is left as an exercise)
The Reduction

- Given a 3-CNF formula F, we construct a graph G as follows.
- The graph has one node for each instance of each literal in the formula.
- Two nodes are connected by an edge if: (1) they correspond to literals in different clauses and (2) those literals do not contradict each other.
Reduction Example

- Let F be the formula: $(a \lor b \lor c) \land (b \lor \overline{c} \lor \overline{d}) \land (\overline{a} \lor c \lor d) \land (a \lor \overline{b} \lor \overline{d})$
- This formula is transformed into the following graph:

(look for the edges that aren’t in the graph)
Reduction

- Let F have k clauses. Then G has a clique of size k iff F has a satisfying assignment. The proof:
- k-clique \implies satisfying assignment: If the graph has a clique of k vertices, then each vertex must come from a different clause. To get the satisfying assignment, we declare that each literal in the clique is true. Since we only connect non-contradictory literals with edges, this declaration assigns a consistent value to several of the variables. There may be variables that have no literal in the clique; we can set these to any value we like.
- satisfying assignment \implies k-clique: If we have a satisfying assignment, then we can choose one literal in each clause that is true. Those literals form a k-clique in the graph.
Reduction Picture

3CNF formula with \(k \) clauses \(\xrightarrow{O(n)} \) graph with \(3k \) nodes

True or False \(\xleftarrow{trivial} \) Clique of size \(k \)?

True or False
In-Class Exercise

Consider the formula: \((a \lor b) \land (b \lor \overline{c}) \land (c \lor \overline{b})\)

- Q1: Transform this formula into a graph, \(G\), using the reduction just given.
- Q2: What is the maximum clique size in \(G\)? Give the vertices in this maximum clique.
Independent Set

- Independent Set is the following problem: “Does there exist a set of \(k \) vertices in a graph \(G \) with no edges between them?”
- It is easy to show that independent set is NP-Hard by a reduction from CLIQUE (will do now in class).
- Thus we can now use Independent Set to show that other problems are NP-Hard
Vertex Cover

• A vertex cover of a graph is a set of vertices that touches every edge in the graph
• The problem Vertex Cover is: “Does there exist a vertex cover of size k in a graph G?”
• We can prove this problem is NP-Hard by an easy reduction from Independent Set
Key Observation

- Key Observation: If I is an independent set in a graph $G = (V, E)$, then $V - I$ is a vertex cover.
- Thus, there is an independent set of size k iff there is a vertex cover of size $|V| - k$.
- For the reduction, we want to show that a polynomial time algorithm for Vertex Cover can give a polynomial time algorithm for Independent Set.
The Reduction

- We are given a graph $G = (V, E)$ and a value k and we must determine if there is an independent set of size k in G.
- To do this, we ask if there is a vertex cover of size $|V| - k$ in G.
- If so then we return that there is an independent set of size k in G.
- If not, we return that there is not an independent set of size k in G.
The Reduction

\[
\text{graph } G = (V, E), \ k \xrightarrow{\text{trivial}} \text{graph } G = (V, E), \ |V| - k
\]

\[
\text{True or False} \xrightarrow{O(1)} \text{True or False}
\]

\[
\text{VertexCover}
\]
A c-coloring of a graph G is a map $C : V \rightarrow \{1, 2, \ldots, c\}$ that assigns one of c “colors” to each vertex so that every edge has two different colors at its endpoints.

The graph coloring problem is: “Does there exist a c-coloring for the graph G?”

Even when $c = 3$, this problem is hard. We call this problem 3Colorable i.e. “Does there exist a 3-coloring for the graph G?”
3Colorable

- To show that 3Colorable is NP-hard, we will reduce from 3Sat
- This means that we want to show that a polynomial time algorithm for 3Colorable can give a polynomial time algorithm for 3Sat
- Recall that the 3-SAT problem is just: “Is there any assignment of variables to a 3CNF formula that makes the formula evaluate to true?”
- And a 3CNF formula is just a conjunct of a bunch of clauses, each of which contains exactly 3 variables e.g.

\[
\text{clause} \quad \left((a \lor b \lor c) \land (b \lor \bar{c} \lor \bar{d}) \land (\bar{a} \lor c \lor d) \land (a \lor \bar{b} \lor d) \right)
\]
Reduction

• We are given a 3-CNF formula, F, and we must determine if it has a satisfying assignment
• To do this, we produce a graph as follows
• The graph contains one *truth* gadget, one *variable* gadget for each variable in the formula, and one *clause* gadget for each clause in the formula
The Truth Gadget

- The truth gadget is just a triangle with three vertices T, F and X, which intuitively stand for \textbf{True}, \textbf{False}, and \textbf{other}
- Since these vertices are all connected, they must have different colors in any 3-coloring
- For the sake of convenience, we will name those colors \textbf{True}, \textbf{False}, and \textbf{Other}
- Thus when we say a node is colored “True”, we just mean that it’s colored the same color as the node T
The Variable Gadgets

- The variable gadget for a variable a is also a triangle joining two new nodes labeled a and \bar{a} to node X in the truth gadget.
- Node a must be colored either “True” or “False”, and so node \bar{a} must be colored either “False” or “True”, respectively.

![Variable gadget diagram]

- The variable gadget ensures that each of the literals is colored either “True” or “False”
The Clause Gadgets

- Each clause gadget joins three literal nodes to node T in the truth gadget using five new unlabelled nodes and ten edges (as in the figure)
- This clause gadget ensures that at least one of the three literal nodes in each clause is colored “True”
- Example clause gadget for the clause $a \lor b \lor \overline{c}$
Example

Consider the formula \((a \lor b \lor c) \land (b \lor \overline{c} \lor \overline{d}) \land (\overline{a} \lor c \lor d) \land (a \lor \overline{b} \lor \overline{d})\).
Following is the graph created by the reduction:
Example

- Note that the 3-coloring of this example graph corresponds to a satisfying assignment of the formula.
- Namely, $a = c = True$, $b = d = False$.
- Note that the final graph contains only one node T, only one node F, only one node \overline{a} for each variable a and so on.
Correctness

- The proof of correctness for this reduction is direct
- If the graph is 3-colorable, then we can extract a satisfying assignment from any 3-coloring, since at least one of the three literal nodes in every clause gadget is colored “True”
- Conversely, if the formula is satisfiable, then we can color the graph according to any satisfying assignment
Reduction Picture

- 3CNF formula \(O(n) \) graph
- True or False trivial True or False
- 3Colorable
Wrap Up

- We’ve just shown that if 3Colorable can be solved in polynomial time then 3-SAT can be solved in polynomial time
- This shows that 3Colorable is NP-Hard
- To show that 3Colorable is in NP, we just need to note that we can easily verify that a graph has been correctly 3-colored in linear time: just compare the endpoints of every edge
- Thus, 3Coloring is NP-Complete.
- This implies that the more general graph coloring problem is also NP-Complete
In-Class Exercise

Consider the problem 4Colorable: “Does there exist a 4-coloring for a graph G?”

- Q1: Show this problem is in NP by showing that there exists an efficiently verifiable proof of the fact that a graph is 4 colorable.
- Q2: Show the problem is NP-Hard by a reduction from the problem 3Colorable. In particular, show the following:
 - Given a graph G, you can create a graph G' such that G' is 4-colorable iff G is 3-colorable.
 - Creating G' from G takes polynomial time

Note: You’ve now shown that 4Colorable is NP-Complete!
Hamiltonian Cycle

- A Hamiltonian Cycle in a graph is a cycle that visits every vertex exactly once (note that this is very different from an Eulerian cycle which visits every edge exactly once)
- The Hamiltonian Cycle problem is to determine if a given graph G has a Hamiltonian Cycle
- We will show that this problem is NP-Hard by a reduction from the vertex cover problem.
The Reduction

- To do the reduction, we need to show that we can solve Vertex Cover in polynomial time if we have a polynomial time solution to Hamiltonian Cycle.
- Given a graph G and an integer k, we will create another graph G' such that G' has a Hamiltonian cycle iff G has a vertex cover of size k.
- As for the last reduction, our transformation will consist of putting together several “gadgets”
Edge Gadget and Cover Vertices

- For each edge \((u, v)\) in \(G\), we have an edge gadget in \(G'\) consisting of twelve vertices and fourteen edges, as shown below

\[
\begin{align*}
(u,v,1) & \quad (u,v,2) & \quad (u,v,3) & \quad (u,v,4) & \quad (u,v,5) & \quad (u,v,6) \\
\quad & \quad & \quad & \quad & \quad & \\
(v,u,1) & \quad (v,u,2) & \quad (v,u,3) & \quad (v,u,4) & \quad (v,u,5) & \quad (v,u,6)
\end{align*}
\]

An edge gadget for \((u, v)\) and the only possible Hamiltonian paths through it.
Edge Gadget

- The four corner vertices \((u, v, 1), (u, v, 6), (v, u, 1), \text{ and } (v, u, 6)\) each have an edge leaving the gadget
- A Hamiltonian cycle can only pass through an edge gadget in one of the three ways shown in the figure
- These paths through the edge gadget will correspond to one or both of the vertices \(u\) and \(v\) being in the vertex cover.
Cover Vertices

- G' also contains k cover vertices, simply numbered 1 through k.
Vertex Chains

- For each vertex u in G, we string together all the edge gadgets for edges (u, v) into a single vertex chain and then connect the ends of the chain to all the cover vertices.
- Specifically, suppose u has d neighbors v_1, v_2, \ldots, v_d. Then G' has the following edges:
 - $d - 1$ edges between $(u, v_i, 6)$ and $(u, v_{i+1}, 1)$ (for all i between 1 and $d - 1$)
 - k edges between the cover vertices and $(u, v_1, 1)$
 - k edges between the cover vertices and $(u, v_d, 6)$
The Reduction

- It’s not hard to prove that if \(\{v_1, v_2, \ldots, v_k\} \) is a vertex cover of \(G \), then \(G' \) has a Hamiltonian cycle
- To get this Hamiltonian cycle, we start at cover vertex 1, traverse through the vertex chain for \(v_1 \), then visit cover vertex 2, then traverse the vertex chain for \(v_2 \) and so forth, until we eventually return to cover vertex 1
- Conversely, one can prove that any Hamiltonian cycle in \(G' \) alternates between cover vertices and vertex chains, and that the vertex chains correspond to the \(k \) vertices in a vertex cover of \(G \)

Thus, \(G \) has a vertex cover of size \(k \) iff \(G' \) has a Hamiltonian cycle
The Reduction

- The transformation from G to G' takes at most $O(|V|^2)$ time, so the Hamiltonian cycle problem is NP-Hard
- Moreover we can easily verify a Hamiltonian cycle in linear time, thus Hamiltonian Cycle is also in NP
- Thus Hamiltonian Cycle is NP-Complete
Example

The original graph G with vertex cover $\{v, w\}$, and the transformed graph G' with a corresponding Hamiltonian cycle (bold edges). Vertex chains are colored to match their corresponding vertices.
The Reduction

\[
\text{graph } G = (V, E), \ k \quad \xrightarrow{O(|V|^2)} \quad \text{graph } G'
\]

\[
\text{True or False} \quad \xrightarrow{O(1)} \quad \text{True or False}
\]

Hamiltonian Cycle
Traveling Sales Person

- A problem closely related to Hamiltonian cycles is the famous *Traveling Salesperson Problem (TSP)*.
- The TSP problem is: “Given a weighted graph G, find the shortest cycle that visits every vertex.
- Finding the shortest cycle is obviously harder than determining if a cycle exists at all, so since Hamiltonian Cycle is NP-hard, TSP is also NP-hard!
NP-Hard Games

- In 1999, Richard Kaye proved that the solitaire game Minesweeper is NP-Hard, using a reduction from Circuit Satisfiability.
- Also recent efforts have shown that Tetris, Lemmings and Super Mario Brothers are NP-Hard
Challenge Problem

• Consider the *optimization* version of, say, the graph coloring problem: “Given a graph G, what is the smallest number of colors needed to color the graph?” (Note that unlike the *decision* version of this problem, this is not a yes/no question)

• Show that the optimization version of graph coloring is also NP-Hard by a reduction from the decision version of graph coloring.

• Is the optimization version of graph coloring also NP-Complete?
Challenge Problem

- Consider the problem 4Sat which is: “Is there any assignment of variables to a 4CNF formula that makes the formula evaluate to true?”
- Is this problem NP-Hard? If so, give a reduction from 3Sat that shows this. If not, give a polynomial time algorithm which solves it.
Challenge Problem

- Consider the following problem: “Does there exist a clique of size 5 in some input graph G?”
- Is this problem NP-Hard? If so, prove it by giving a reduction from some known NP-Hard problem. If not, give a polynomial time algorithm which solves it.
Vertex Cover

- A *vertex cover* of a graph is a set of vertices that touches every edge in the graph.
- The decision version of *Vertex Cover* is: “Does there exist a vertex cover of size k in a graph G?”.
- We’ve proven this problem is NP-Hard by an easy reduction from Independent Set.
- The *optimization* version of *Vertex Cover* is: “What is the minimum size vertex cover of a graph G?”
- We can prove this problem is NP-Hard by a reduction from the decision version of Vertex Cover (left as an exercise).
Approximating Vertex Cover

- Even though the optimization version of Vertex Cover is NP-Hard, it’s possible to *approximate* the answer efficiently.
- In particular, in polynomial time, we can find a vertex cover which is no more than 2 times as large as the minimal vertex cover.
Approximation Algorithm

- The approximation algorithm does the following until G has no more edges:
- It chooses an arbitrary edge (u, v) in G and includes both u and v in the cover
- It then removes from G all edges which are incident to either u or v
Approximation Algorithm

Approx-Vertex-Cover(G){
 C = {};
 E’ = Edges of G;
 while(E’ is not empty){
 let (u,v) be an arbitrary edge in E’;
 add both u and v to C;
 remove from E’ every edge incident to u or v;
 }
 return C;
}
Analysis

- If we implement the graph with adjacency lists, each edge need be touched at most once
- Hence the run time of the algorithm will be $O(|V| + |E|)$, which is polynomial time
- First, note that this algorithm does in fact return a vertex cover since it ensures that every edge in G is incident to some vertex in C
- Q: Is the vertex cover actually no more than twice the optimal size?
Let A be the set of edges which are chosen in the first line of the while loop

- Note that no two edges of A share an endpoint
- Thus, any vertex cover must contain at least one endpoint of each edge in A
- Thus if C^* is an optimal cover then we can say that $|C^*| \leq |A|$
- Further, we know that $|C| = 2|A|$
- This implies that $|C| \leq 2|C^*|$

Which means that the vertex cover found by the algorithm is no more than twice the size of an optimal vertex cover.
• An optimization version of the TSP problem is: “Given a weighted graph G, what is the shortest Hamiltonian Cycle of G?”
• This problem is NP-Hard by a reduction from Hamiltonian Cycle
• However, there is a 2-approximation algorithm for this problem if the edge weights obey the triangle inequality
Triangle Inequality

- In many practical problems, it’s reasonable to make the assumption that the weights, c, of the edges obey the triangle inequality:

$$c(u, w) \leq c(u, v) + c(v, w)$$

- The triangle inequality says that for all vertices $u, v, w \in V$:

- In other words, the cheapest way to get from u to w is always to just take the edge (u, w)
- In the real world, this is usually a pretty natural assumption. For example it holds if the vertices are points in a plane and the cost of traveling between two vertices is just the euclidean distance between them.
Approximation Algorithm

- Given a weighted graph G, the algorithm first computes a MST for G, T, and then arbitrarily selects a root node r of T.
- It then lets L be the list of the vertices visited in a depth first traversal of T starting at r.
- Finally, it returns the Hamiltonian Cycle, H, that visits the vertices in the order L.
Approximation Algorithm

Approx-TSP(G) {
 T = MST(G);
 L = the list of vertices visited in a depth first traversal of T, starting at some arbitrary node in T;
 H = the Hamiltonian Cycle that visits the vertices in the order L;
 return H;
}
The top left figure shows the graph G (edge weights are just the Euclidean distances between vertices); the top right figure shows the MST T. The bottom left figure shows the depth first walk on T, $W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)$; the bottom right figure shows the Hamiltonian cycle H obtained by deleting repeat visits from W, $H = (a, b, c, h, d, e, f, g)$.
The first step of the algorithm takes $O(|E| + |V| \log |V|)$ (if we use Prim’s algorithm).

The second step is $O(|V|)$.

The third step is $O(|V|)$.

Hence the run time of the entire algorithm is polynomial.
Analysis

An important fact about this algorithm is that: *the cost of the MST is less than the cost of the shortest Hamiltonian cycle.*

- To see this, let T be the MST and let H^* be the shortest Hamiltonian cycle.
- Note that if we remove one edge from H^*, we have a spanning tree, T'.
- Finally, note that $w(H^*) \geq w(T') \geq w(T)$
- Hence $w(H^*) \geq w(T)$
Analysis

- Now let W be a depth first walk of T which traverses each edge exactly twice (similar to what you did in the hw)
- In our example, $W = (a, b, c, b, h, b, a, d, e, f, e, g, e, d, a)$
- Note that $c(W) = 2c(T)$
- This implies that $c(W) \leq 2c(H^*)$
Analysis

- Unfortunately, W is not a Hamiltonian cycle since it visits some vertices more than once.
- However, we can delete a visit to any vertex and the cost will not increase because of the triangle inequality. (The path without an intermediate vertex can only be shorter.)
- By repeatedly applying this operation, we can remove from W all but the first visit to each vertex, without increasing the cost of W.
- In our example, this will give us the ordering $H = (a, b, c, h, d, e, f, g)$.

• By the last slide, $c(H) \leq c(W)$.
• So $c(H) \leq c(W) = 2c(T) \leq 2c(H*)$
• Thus, $c(H) \leq 2c(H*)$
• In other words, the Hamiltonian cycle found by the algorithm has cost no more than twice the shortest Hamiltonian cycle.
• Many real-world problems can be shown to not have an efficient solution unless $P = NP$ (these are the NP-Hard problems)
• However, if a problem is shown to be NP-Hard, all hope is not lost!
• In many cases, we can come up with an provably good approximation algorithm for the NP-Hard problem.