
CS 561, Dynamic Programming

Jared Saia

University of New Mexico

Dynamic Programming

• Intro

• String Alignment

• Matrix Multiplication

• Longest Common Subsequence

1

DP Intro

“Those who cannot remember the past are doomed to repeat

it.” - George Santayana, The Life of Reason, Book I: Introduc-

tion and Reason in Common Sense (1905)

What is Dynamic Programming?

• Dynamic Programming is basically “Divide and Conquer”

with memorization

• Basic Trick is: Don’t solve the same problem more than

once!

2

Fibonacci Example

Consider the following procedure for computing the n-th Fi-

bonacci number:

Fib(n){

if (n<2)

return 1;

else

return Fib(n-1) + Fib(n-2);

}

3

Analysis

• Q: What is the runtime of Fib?

• A: Except for recursive calls, the entire algorithm takes a

constant number of steps. If T (n) is the run time of the

algorithm on input n, then we can say that:

T (0) = T (1) = 1, T (n) = T (n− 2) + T (n− 1) + 1

• It’s easy to show by induction that T (n) = 2Fn+1 − 1. This

is very bad!

4

Aside

• Q: How can we solve T (n) exactly?

• A: We solved this recurrence using annihilators in the last

lecture to get T (n) = c1φ
n + c2φ̂

n + c31
n where φ = 1+

√
5

2

and φ̂ = 1−
√
5

2 .

5

Aside II

• If we solve for constants, we get that:

T (0) = 1 = c1 + c2 + c3

T (1) = 1 = c1φ+ c2φ̂+ c3

T (2) = 2 = c1φ
2 + c2φ̂

2 + c3

Solving this system of linear equations (using Gaussian elim-

ination) gives:

c1 = 1+
1√
5
, c2 = 1−

1√
5
, c3 = −1,

6

Aside III

• So our final solution is

T (n) =

!

1+
1√
5

"

φn +

!

1−
1√
5

"

φ̂n − 1 = Θ(φn).

7

The Problem

• The reason Fib is so slow is that it computes the same Fi-

bonacci numbers over and over

• In general, there are Fk−1 recursive calls to Fib(n-k)

• We can greatly speed up the algorithm by writing down the

results of the recursive calls and looking them up if needed

8

DP-Fib

DP-Fib(n){

if (n<2)

return 1;

else{

if (F[n] is undefined){

F[n] = DP-Fib(n-1) + DP-Fib(n-2);

}

return F[n];

}}

9

Analysis

• For every value of x between 1 and n, DP-Fib(x) is called

exactly one time.

• Each call does constant work

• Thus runtime of DP-Fib(n) is Θ(n) - a huge savings

10

Take Away

Dynamic Programming is different than Divide and Conquer in

the following way:

• “Divide and Conquer” divides problem into independent sub-

problems, solves the subproblems recursively and then com-

bines solutions to solve original problem

• Dynamic Programming is used when the subproblems are not

independent, i.e. the subproblems share subsubproblems

• For these kinds of problems, divide and conquer does more

work than necessary

• Dynamic Programming solves each subproblem once only and

saves the answer in a table for future reference

11

The Pattern

• Formulate the problem recursively.. Write down a formula

for the whole problem as a simple combination of answers to

smaller subproblems

• Build solutions to your recurrence from the bottom up.

Write an algorithm that starts with the base cases of your

recurrence and works its way up to the final solution by con-

sidering the intermediate subproblems in the correct order.

Note: Dynamic Programs store the results of intermediate sub-

problems. This is frequently but not always done with some type

of table.

12

Edit Distance

• The edit distance between two words is the minimum number

of letter insertions, letter deletions, and letter substitutions

required to transform one word into another. For example,

the edit distance between FOOD and MONEY is at most four:

FOOD → MOOD → MON∧D → MONED → MONEY

13

String Alignment

Better way to display this process:

• Place the words one above the other in a table

• Put a gap in the first word for every insertion and a gap in

the second word for every deletion

• Columns with two different characters correspond to substi-

tutions

• Then the number of editing steps is just the number of

columns that don’t contain the same character twice

14

Example

• String Alignment for “FOOD” and “MONEY”:

F O O D
M O N E Y

• It’s not too hard to see that we can’t do better than four for

the edit distance between “Food” and “Money”

15

Example II

• Unfortunately, it can be more difficult to compute the edit

distance exactly. Example:

A L G O R I T H M
A L T R U I S T I C

16

Key Observation

• If we remove the last column in an optimal alignment, the

remaining alignment must also be optimal

• Easy to prove by contradiction: Assume there is some better

subalignment of all but the last column. Then we can just

paste the last column onto this better subalignment to get

a better overall alignment.

• Note: The last column can be either: 1) a blank on top

aligned with a character on bottom, 2) a character on top

aligned with a blank on bottom or 3) a character on top

aligned with a character on bottom

17

DP Solution

• To develop a DP algorithm for this problem, we first need to

find a recursive definition

• Assume we have a m length string A and an n length string

B

• Let E(i, j) be the edit distance between the first i characters

of A and the first j characters of B

• Then what we want to find is E(n,m)

18

Recursive Definition

• Say we want to compute E(i, j) for some i and j

• Further say that the “Recursion Fairy” can tell us the solu-

tion to E(i′, j′), for all i′ ≤ i, j′ ≤ j, except for i′ = i and

j′ = j

• Q: Can we compute E(i, j) efficiently with help from our fairy

friend?

19

Recursive Definition

There are three possible cases:

• Insertion: E(i, j) = 1+ E(i− 1, j)

• Deletion: E(i, j) = 1+ E(i, j − 1)

• Substitution: If ai = bj, E(i, j) = E(i−1, j−1), else E(i, j) =

E(i− 1, j − 1) + 1

20

Summary

Let I(A[i] ∕= B[j]) = 1 if A[i] and B[j] are different, and 0 if they

are the same. Then:

E(i, j) = min

#
$%

$&

E(i− 1, j) + 1,
E(i, j − 1) + 1,
E(i− 1, j − 1) + I(A[i] ∕= B[j])

'
$(

$)

21

Base Case(s)

It’s not too hard to see that:

• E(0, j) = j for all j, since the j characters of B must be

aligned with blanks

• Similarly, E(i,0) = i for all i

22

Recursive Alg

• We now have enough info to directly create a recursive al-

gorithm

• The run time of this recursive algorithm would be given by

the following recurrence:

T (m,0) = T (0, n) = O(1)

T (m,n) = T (m,n− 1)+ T (m− 1, n)+ T (n− 1,m− 1)+O(1)

• Solution: T (n, n) = Θ(2n/2), which is terribly, terribly slow.

23

Better Idea

• We can build up a m × n table which contains all values of

E(i, j)

• We start by filling in the base cases for this table: the entries

in the 0-th row and 0-th column

• To fill in any other entry, we need to know the values directly

above, to the left and above and to the left.

• Thus we can fill in the table in the standard way: left to

right and top down to ensure that the entries we need to fill

in each cell are always available

24

Example Table

• Bold numbers indicate places where characters in the strings

are equal

• Arrows represent predecessors that define each entry: hori-

zontal arrow is deletion, vertical is insertion and diagonal is

substitution.

• Bold diagonal arrows are “free” substitutions of a letter for

itself

• Any path of arrows from the top left to the bottom right cor-

ner gives an optimal alignment (there are three paths in this

example table, so there are three optimal edit sequences).

25

A L G O R I T H M
0 →1→2→3→4→5→6→7→8→ 9
↓ ↘↘↘↘↘↘↘↘↘

A 1 0→1→2→3→4→5→6→7→ 8
↓ ↓↘↘↘↘↘↘↘↘↘

L 2 1 0→1→2→3→4→5→6→ 7
↓ ↓ ↓↘ ↘ ↘ ↘ ↘↘↘↘↘↘↘↘↘

T 3 2 1 1→2→3→4 4→5→ 6
↓ ↓ ↓ ↓↘ ↘↘↘↘↘↘↘↘↘ ↘ ↘

R 4 3 2 2 2 2→3→4→5→ 6
↓ ↓ ↓↘↓↘ ↓↘↓↘ ↘ ↘ ↘

U 5 4 3 3 3 3 3→4→5→ 6
↓ ↓ ↓↘↓↘ ↓↘↓↘↘↘↘↘↘↘↘↘ ↘ ↘ ↘

I 6 5 4 4 4 4 3→4→5→ 6
↓ ↓ ↓↘↓↘ ↓↘↓ ↓ ↘ ↘

S 7 6 5 5 5 5 4 4 5 6
↓ ↓ ↓↘↓↘ ↓↘↓ ↓↘↘↘↘↘↘↘↘↘ ↘ ↘

T 8 7 6 6 6 6 5 4→5→ 6
↓ ↓ ↓↘↓↘ ↓↘↓ ↓ ↓↘ ↘

I 9 8 7 7 7 7 6 5 5→ 6
↓ ↓ ↓↘↓↘ ↓↘↓ ↓ ↓↘↓↘

C 10 9 8 8 8 8 7 6 6 6

The code

EditDistance(A[1,..,m],B[1,..,n]){

for (i=1;i<=m;i++){

Edit[i,0] = i;}

for (j=1;j<=n;j++){

Edit[0,j] = j;}

for (i=1;i<=m;i++){

for (j=1;j<=n;j++){

if (A[i]==B[j]){

Edit[i,j] = min(Edit[i-1,j]+1,

Edit[i,j-1]+1,

Edit[i-1,j-1]);

}else{

Edit[i,j] = min(Edit[i-1,j]+1,

Edit[i,j-1]+1;

Edit[i-1,j-1]+1);

}}}

return Edit[m,n];}

26

Analysis

• Let n be the length of the first string and m the length of

the second string

• Then there are Θ(nm) entries in the table, and it takes Θ(1)

time to fill each entry

• This implies that the run time of the algorithm is Θ(nm)

• Q: Can you find a faster algorithm?

27

Reconstructing an optimal alignment

• In this code, we do not keep info around to reconstruct the

optimal alignment

• However, it is a simple matter to keep around another array

which stores, for each cell, a pointer to the cell that was used

to achieve the current cell’s minimum edit distance

• To reconstruct a solution, we then need only follow these

pointers from the bottom right corner up to the top left

corner

28

In Class Exercise

• Create a string alignment table for the two strings “abba”

and “bab”. Put “abba” at the top of the table and “bab”

on the left side

• Qi: (i = 1,2, . . . ,5) What is the i-th row of your table

• Q6: What is the minimum edit distance and how many align-

ments achieve it?

29

Take Away

• To solve the string alignment problem, we did the following:

1) formulated the problem recursively 2) built a solution to

the recurrence from the bottom up

• Next we’ll see how a similar technique can be used to solve

the matrix multiplication problem.

30

Matrix Chain Multiplication

Problem:

• We are given a sequence of n matrices, A1, A2, . . . , An, where

for i = 1,2, . . . , n, matrix Ai has dimension pi−1 by pi
• We want to compute the product, A1A2, . . . , An as quickly as

possible.

• In particular, we want to fully parenthesize the expression

above so there are no ambiguities about how the matrices

are multiplied

• A product of matrices is fully parenthisized if it is either a

single matrix, or the product of two fully parenthesized matrix

products, surrounded by parenthesis

31

Parenthesizing Matrices

• There are many ways to parenthesis the matrices

• Each way gives the same output (because of associativity of

matrix multiplications)

• However the way we parenthesize will effect the time to com-

pute the output

• Our Goal: Find a parenthesization which requires the minimal

number of scalar multiplications

32

Example

• In this example, it’s much better to multiply the last two

matrices first (this gives us a short, narrow matrix on the

right)

• Worse to multiply the first two matrices first (this gives us a

short wide matrix on the left)

• In general, our goal is to find ways to always create narrow

and short resulting matrices.

33

A Problem

Problem: There can be many ways to paranthesize. E.g.

• (A1(A2(A3A4)))

• (A1((A2A3)A4))

• ((A1A2)(A3A4))

• ((A1(A2A3))A4)

• (((A1A2)A3)A4)

34

A Problem

• Let P (n) be the number of ways to paranthesize n matrices.

Then P (1) = 1

• For n ≥ 2, we know that a fully paranthesized product is the

product of two fully paranthesized products, and the split

can occur anywhere from k = 1 to k = n− 1.

• Hence for n ≥ 2:

P (n) =
n−1*

k=1

P (k)P (n− k)

• You can show that the solution to this recurrence is Ω(2n)

35

The Pattern

Q: Can we develop a DP Solution to this problem?

• Formulate the problem recursively.. Write down a formula

for the whole problem as a simple combination of answers to

smaller subproblems

• Build solutions to your recurrence from the bottom up.

Write an algorithm that starts with the base cases of your

recurrence and works its way up to the final solution by con-

sidering the intermediate subproblems in the correct order.

36

Key Observation

• Let Ai..j (for i ≤ j) be the matrix that results from evaluating

the product AiAi+1, . . . Aj

• Imagine we are computing Ai..j

• The last multiplication we do must look like this:

Ai..j = (Ai..k) ∗ (Ak+1..j)

for some k between i and j − 1

• Then total cost to compute Ai..j is:

cost to compute Ai..k +
cost to compute Ak+1..j +
cost to multiply Ai..k and Ak+1..j

37

Recursive Formulation

• For any integers x, y, let m(x, y) be the minimum cost of

computing Ax..y

• Then for any k between i and j − 1,
m(i, j) ≤ optimal cost to compute Ai..k +

optimal cost to compute Ak+1..j +
cost to multiply Ai..k and Ak+1..j

• In other words:

m(i, j) ≤ m(i, k) +
m(k +1, j) +
cost to multiply Ai..k and Ak+1..j

38

Cost to Multiply

• Ai..k is a pi−1 by pk matrix

• Ak+1..j is a pk by pj matrix

• Thus multiplying Ai..k and Ak+1..j takes pi−1pkpj operations

• Hence we have:

m(i, j) ≤ m(i, k) +
m(k +1, j) +
pi−1pkpj

39

Recursive Formulation

• We’ve shown that m(i, j) ≤ m(i, k) + m(k + 1, j) + pi−1pkpj
for any k = i, i+1, . . . , j − 1

• Further note that the optimal parenthesization must use

some value of k = i, i+1, . . . , j−1. So we need only pick the

best

• Thus we have:

m(i, j) = 0 if i = j
m(i, j) = mini≤k<j{m(i, k) +m(k +1, j) + pi−1pkpj}

40

The Recursive Algorithm

• We now have enough information to write a recursive func-

tion to solve the problem

• The recursive solution will have runtime given by the follow-

ing recurrence:

• T (1) = 1,

• T (n) = 1+
+n−1

k=1(T (k) + T (n− k) + 1)

• Unfortunately, the solution to this recurrence is Ω(2n) (as

shown on p. 346 of the text)

41

DP Algorithm

• Note that we must solve one subproblem for each choice of

i and j satisfying 1 ≤ i ≤ j ≤ n

• This is only
,
n
2

-
+ n = Θ(n2) subproblems

• The recursive algorithm encounters each subproblem many

times in the branches of the recursion tree.

• However, we can just compute these subproblems from the

bottom up, storing the results in a table (this is the DP

solution)

42

Pseudocode

Matrix-Chain-Order(int p[]){

n = p.length - 1;

for (i=1;i<=n;i++){

m(i,i) = 0;

}

for (l=2;l<=n;l++){ \\l is chain length

for (i=1;i<=n-l+1;i++){

j = i+l-1;

m[i,j] = MAXINT;

for(k=i;k<=j-1;k++){

q = m[i,k] + m[k+1,j] + p[i-1]*p[k]*p[j];

if(q<m[i,j]){

m[i,j] = q;

s[i,j] = k;

}

}}}}

43

Psuedocode

• This code computes both the optimal cost and a parenthe-

sization that achieves that cost

• It uses an m array to store the optimal costs of computing

m(i, j). It also uses a s array, where s(i, j) stores the k value

which gives m(i, j)

• The parenthesization can be recovered from the s array using

the pseudocode in the book on p. 388.

44

Analysis

• This code has three nested loops, each of which takes on at

most n− 1 values, and the inner loop takes O(1) time.

• Thus the runtime is O(n3)

• The algorithm also requires Θ(n2) space

45

Example

• Consider the sequence of three matrices, A1, A2, A3 whose

dimensions are given by the sequence 3,1,2,1 (i.e. p0 = 3,

p1 = 1, p2 = 2, p3 = 1)

• Let’s construct the tables giving the optimal parenthesization

• The (i, j) entry of the first table will give the optimal cost

for computing Ai..j, the (i, j) entry of the second table will

give a k value which achieves this optimal cost

46

Computations

• m(1,1) = m(2,2) = m(3,3) = 0

• m(1,2) = p0p1p2 = 6

• m(2,3) = p1p2p3 = 2

47

Computations

m(1,3) = min
.

m(1,1) +m(2,3) + p0p1p3),
m(1,2) +m(3,3) + p0p2p3)

/

= min
.

0+ 2+ 3,
6+ 0+ 6

/

= 5

48

Example, m array

1 2 3
1 0 6 5
2 - 0 2
3 - - 0

49

Example, s array

1 2 3
1 - 1 1
2 - - 2
3 - - -

50

Example

• Thus an optimal parenthesization is (A1(A2A3))

• The cost of this is 5

51

Example II

• Consider the sequence of three matrices, A1, A2, A3, A4 whose

dimensions are given by the sequence 3,1,2,1,2 (i.e. p0 = 3,

p1 = 1, p2 = 2, p3 = 1, p4 = 2)

• Let’s construct the tables giving the optimal parenthesization

• The (i, j) entry of the first table will give the optimal cost

for computing Ai..j, the (i, j) entry of the second table will

give a k value which achieves this optimal cost

52

Example II, m array

1 2 3 4
1 0 6 5 10
2 - 0 2 4
3 - - 0 4
4 - - - 0

53

Example II, s array

1 2 3 4
1 - 1 1 1
2 - - 2 3
3 - - - 3
4 - - - -

54

Example Computation

m(1,4) = min

#
%

&

m(1,1) +m(2,4) + p0p1p4),
m(1,2) +m(3,4) + p0p2p4),
m(1,3) +m(4,4) + p0p3p4)

'
(

)

= min

#
%

&

0+ 4+ 6,
6+ 4+ 12,
5+ 0+ 6

'
(

)
= 10

This minimum is achieved when k = 1

55

Example II

• Thus an optimal parenthesization is (A1((A2A3)A4))

• The cost of this is 10

56

In-Class Exercise

• Consider the sequence of three matrices, A1, A2, A3 whose

dimensions are given by the sequence 1,2,1,2 (i.e. p0 = 1,

p1 = 2, p2 = 1, p3 = 2)

• Q1: What are the m array and s array for these inputs?

• Q2: What is the optimal parenthesization?

57

Subsequence Definition

• Assume given sequence X = 〈x1, x2, . . . , xm〉
• Let Z = 〈z1, z2, . . . , zl〉
• Then Z is a subsequence of X if there exists a strictly in-

creasing sequence 〈i1, i2, . . . , ik〉 of indices such that for all

j = 1,2, . . . , k, xij = zj

58

Example

• Let X = 〈A,B,C,B,A,B,D,C〉,
• Z = 〈A,C,A,B,C〉
• Then, Z is a subsequence of X

59

Common Subsequence

• Given two sequences X and Y , we say that Z is a common

subsequence of X and Y if Z is a subsequence of X and Z is

a subsequence of Y

• Example: X = 〈A,B,D,C,B,A,B,C〉, Y = 〈A,D,B,C,D,B,A,B〉
• Then Z = 〈A,B,B,A,B〉 is a common subsequence

• Z is not a longest common subsequence(LCS) of X and Y

though since the common subsequence Z′ = 〈A,B,C,B,A,B〉
is longer

• Q: Is Z′ a longest common subsequence?

60

LCS Problem

• We are given two sequences X = 〈x1, x2, . . . , xm〉 and Y =

〈y1, y2, . . . , yn〉
• Goal: Find a maximum-length common subsequence of X

and Y

61

Brute Force

• Brute Force approach is to enumerate all possible subse-

quences of X, check to see if its a subsequence of Y , and

then keep track of the longest common subsequence of both

X and Y

• This is slow.

• Q: How many subsequences of X are there?

62

Terminology

• Given a sequence X = 〈x1, x2, . . . xm〉, for i = 0,1, . . . ,m, let

Xi be the i-th prefix of X i.e. Xi = 〈x1, x2, . . . , xi〉
• Example: if X = 〈A,B,D,C〉, X0 = 〈〉 and X3 = 〈A,B,D〉

63

Optimal Substructure

Lemma 1: Let X = 〈x1, x2, . . . , xm〉 and let Y = 〈y1, y2, . . . , yn〉 be

sequences and let Z = 〈z1, z2, . . . , zk〉 be any LCS of X and Y .

Then:

• If xm = yn, then zk = xm = yn and Zk−1 is a LCS of Xm−1

and Yn−1

• If xm ∕= yn, then zk ∕= xm implies that Z is a LCS of Xm−1

and Y

• If xm ∕= yn, then zk ∕= yn implies that Z is an LCS of X and

Yn−1

64

In-Class Exercise

• Prove each of the three statements in the previous slide

• Hint: Use proof by contradiction

65

Recursive Solution

• Let X = 〈x1, x2, . . . , xm〉 and Y = 〈y1, y2, . . . , yn〉 be arbitrary

sequences

• Based on Lemma 1, there are two main possibilities for the

LCS of X and Y :

– If xm = yn, LCS(X,Y) is LCS(Xm−1, Yn−1) appended to

xm = yn

– Otherwise, either LCS(X,Y) is LCS(Xm−1, Y) or LCS(X,Yn−1)

(whichever is larger)

66

Recursive solution

• Let c(i, j) be the length of an LCS of the sequence Xi, Yj
• Note that c(i, j) = 0 if i or j is 0

• Thus we have:

c(i, j) = 0 if i = 0 or j = 0
c(i, j) = c(i− 1, j − 1) + 1 if i, j > 0 and xi = yj
c(i, j) = max(c(i, j − 1), c(i− 1, j)) if i, j > 0 and xi ∕= yj

67

DP Solution

• This is already enough to write up a recursive function, how-

ever the naive recursive function will take exponential time

• Instead, we can use dynamic programming and solve from

the bottom up

• Code for doing this is on p. 353 and 355 of the text, basically

it uses the same ideas we’ve seen before of filling in entries

in a table from the bottom up.

68

Example

• Consider X = 〈A,B,D,C,B,A,B,C〉, Y = 〈A,D,B,C,D,B,A,B〉
• The next slide gives the table constructed by the DP algo-

rithm for computing the LCS of X and Y

• The bold numbers represent one possible path giving a LCS.

• The arrows keep track of where the minimum is obtained

from

69

Example

A B D C B A B C
0 0 0 0 0 0 0 0 0
↘ ↘

A 0 1→1→1→1→1→1→1→1
↓ ↓↘

D 0 1 1 2→2→2→2→2→2
↓↘ ↘ ↘

B 0 1 2→2→2 3→3→3→3
↓ ↓ ↓↘ ↓ ↓ ↓

C 0 1 2→2 3→3→3→3→4
↓ ↓↘ ↓ ↓ ↓ ↓ ↓

D 0 1 2 3→3→3→3→3 4
↓↘↓ ↓ ↓↘ ↘ ↓

B 0 1 2 3→3 4→4→4→4
↘↓ ↓ ↓ ↓ ↓↘

A 0 1 2 3→3 4 5→5→5
↓↘↓ ↓ ↓↘↓ ↓↘

B 0 1 2 3→3 4 5 6→6

70

Reconstruction

• To find a reconstruction, first find a path of edges leading

from the bottom right corner to the top left corner

• In this path, the target of each diagonal arrow gives a char-

acter to include in the LCS

• In our example, 〈A,B,C,B,A,B〉 is the LCS we get by fol-

lowing the edges along the only path from the bottom right

to the top left

71

Take Away

• We’ve seen four different DP type algorithms

• In each case, we did the following 1) found a recurrence for

the solution 2) built solutions to the recurrence from the

bottom up

• You should be prepared to do this on your own now!

72

