CS 561, Gradient Descent

Jared Saia
University of New Mexico
The Problem

Given:

- Convex space \mathcal{K}
- Convex function f

Goal: Find $x \in \mathcal{K}$ that minimizes $f(x)$
Convexity

1. A convex set contains every point on every line segment drawn between any two points in the set.
2. A convex function is one where any secant line segment is always above the function. A secant (Latin: cut) line is a line segment that intersects the function at exactly two points.
 • Equivalently, a function is convex if the epigraph is a convex set. An epigraph (“epi” (Latin): on top of) is the set of points above the function.
 • If the function is twice differentiable, then it is convex iff its second derivative is always non-negative.
3. A function f is concave iff $-f$ is convex.
What is a gradient?

- The gradient of a function f (∇f) is just the derivatives of f written as a vector.
- Ex: The gradient of $f(x, y) = 2x + 3y$ is the vector $(2, 3)$
- Ex: The gradient of $f(x, y) = x^2 + y^2$ at the point $x = 2, y = 3$ is $(4, 6)$
- Ex: The gradient of $f(x, y) = xy$ at the point $x = 2, y = 3$ is $(3, 2)$
Gradient Descent Variables

- $D = \max_{x,y \in \mathcal{K}} |x - y|$
- G is an upperbound on $|\nabla f(x)|$ for any $x \in \mathcal{K}$

Note: all norms are 2-norms. D is known as the diameter of \mathcal{K}
Gradient Descent Algorithm

$$\eta \leftarrow \frac{D}{G \sqrt{T}}$$

Repeat for $i = 0$ to T:

1. $y_{i+1} \leftarrow x_i - \eta \nabla f(x_i)$
2. $x_{i+1} \leftarrow$ Projection of y_{i+1} onto \mathcal{K}

Output $z = \frac{1}{T} \sum_i x_i$
Theorem 1

Let $x^* \in \mathcal{K}$ be the value that minimizes f. Then, for any $\epsilon > 0$, if we set $T = \frac{D^2G^2}{\epsilon^2}$, then:

$$f(z) \leq f(x^*) + \epsilon$$
Fact 1: $f(x) - f(y) \leq \nabla f(x) \cdot (x - y)$

A convex function that is differentiable satisfies the following (basically, this says that the function is above the tangent plane at any point).

$$f(x + z) \geq f(x) + \nabla f(x) \cdot z, \text{ for all } x, z$$

Setting $z = y - x$, we get:

$$f(x) - f(y) \leq \nabla f(x) \cdot (x - y) \text{ for all } x, y$$
Proof of Theorem 1 (I)

\[|x_{i+1} - x^*|^2 \leq |y_{i+1} - x^*|^2 \]
\[= |x_i - x^* - \eta \nabla f(x_i)|^2 \]
\[= |x_i - x^*|^2 + \eta^2 |\nabla f(x_i)|^2 - 2\eta \nabla f(x_i) \cdot (x_i - x^*) \]

First step holds since \(x_{i+1} \) projects \(y_{i+1} \) onto a space that contains \(x^* \). Second step holds by definition of \(y_{i+1} \). Last step holds since \(|v|^2 = v \cdot v \).
Proof of Theorem 1 (II)

From last slide:

\[
|x_{i+1} - x^*|^2 \leq |x_i - x^*|^2 + \eta^2 |\nabla f(x_i)|^2 - 2\eta \nabla f(x_i) \cdot (x_i - x^*)
\]

Reorganizing, and using definition of \(G \):

\[
\nabla f(x_i) \cdot (x_i - x^*) \leq \frac{1}{2\eta} \left(|x_i - x^*|^2 - |x_{i+1} - x^*|^2 \right) + \frac{\eta}{2} G^2
\]

Using Fact 1:

\[
f(x_i) - f(x^*) \leq \frac{1}{2\eta} \left(|x_i - x^*|^2 - |x_{i+1} - x^*|^2 \right) + \frac{\eta}{2} G^2 \quad (1)
\]
Proof of Theorem 1 (III)

Sum last inequality for \(i = 1 \) to \(T \). After cancellations:

\[
\sum_{i=1}^{T} (f(x_i) - f(x^*)) \leq \frac{1}{2\eta} \left(|x_1 - x^*|^2 - |x_{T+1} - x^*|^2 \right) + \frac{T\eta}{2} G^2
\]

Divide the above by \(T \). By convexity, \(f \left(\frac{1}{T} \sum_i x_i \right) \leq \frac{1}{T} \sum_i f(x_i) \).

Since \(z = \frac{1}{T} \sum_i x_i \), we get

\[
f(z) - f(x^*) \leq \frac{D^2}{2\eta T} + \frac{\eta}{2} G^2.
\]

Since \(\eta = \frac{D}{G\sqrt{T}} \), the right hand side is at most \(\frac{DG}{\sqrt{T}} \). Since \(T = \frac{D^2G^2}{\epsilon^2} \), we have \(f(z) \leq f(x^*) + \epsilon \)
Online Gradient Descent

• Surprisingly, the gradient descent algorithm can work even when the function to minimize changes in every round!
• Even if these functions are chosen by an adversary! - So long as they are always convex.
• We just need to make a slight tweak in the algorithm (next slide - can you spot the differences?)
Online GD Algorithm

\[\eta \leftarrow \frac{D}{G\sqrt{T}} \]

Repeat for \(i = 0 \) to \(T \):

1. \(y_{i+1} \leftarrow x_i - \eta \nabla f_i(x_i) \)
2. \(x_{i+1} \leftarrow \text{Projection of } y_{i+1} \text{ onto } \mathcal{K} \)
Online Gradient Theorem

Theorem 2 (Zinkevich’s Theorem) Let $x^* \in \mathcal{K}$ be the value that minimizes $\sum_i f_i(x^*)$. Then, for all $T > 0$,

$$\frac{1}{T} \sum_i (f_i(x_i) - f_i(x^*)) \leq \frac{DG}{\sqrt{T}}.$$

Notes: The left hand side of this inequality is called the regret per step.
Proof

- Equation 1 from Slide 9 bounds the regret for step i
- Sum regrets over all i and divide by T to get the theorem!
Application: Portfolio Management

- From Section 16.6 in Arora notes
Portfolio Management

• Imagine you are investing in n stocks
• For i, $1 \leq i \leq n$, and $t > 1$, define

$$r_t[i] = \frac{\text{Price of stock } i \text{ on day } t}{\text{Price of stock } i \text{ on day } t - 1}$$

• Let x^* be an optimal allocation of your money among the n stocks in hindsight.
• Q: Can we design an algorithm that is competitive with x^*?
Portfolio Management

- Our goal: Choose an allocation, x_t for each day t, that maximizes

$$\prod_{t} r_t \cdot x_t$$

- Taking logs, we get that we want to maximize:

$$\sum_{t} \log(r_t \cdot x_t)$$

- Same as minimizing

$$-\sum_{t} \log(r_t \cdot x_t)$$

- This last function is convex and so by Zinkevich’s theorem, online gradient descent tracks

$$-\sum_{t} \log(r_t \cdot x^*)$$
Stochastic Gradient Descent

The final major trick of GD enables significant speed up. Assume we want to minimize over just one function, f, again.

- In each step, i, we estimate the gradient of f at x_i based on one random data item
- Call this random gradient g_i, where $E(g_i) = \nabla f(x_i)$
- Then, using the g_i's we get essentially same results as if we had the true gradient
Stochastic GD Algorithm

\[\eta \leftarrow \frac{D}{G\sqrt{T}} \]

Repeat for \(i = 0 \) to \(T \):

1. \(g_i \leftarrow \) a random vector, such that \(E(g_i) = \nabla f(x_i) \)
2. \(y_{i+1} \leftarrow x_i - \eta g_i \)
3. \(x_{i+1} \leftarrow \) Projection of \(y_{i+1} \) onto \(K \)

Output \(z = \frac{1}{T} \sum_i x_i \)
Stochastic GD Theorem

Theorem 3 \(E(f(z)) \leq f(x^*) + \frac{DG}{\sqrt{T}} \).
Proof (1/2)

\[
E(f(z)) = E\left(f\left(\frac{1}{T} \sum_{i=1}^{T} x_i \right) \right)
\leq E\left(\frac{1}{T} \sum_{i=1}^{T} f(x_i) \right) \quad \text{By convexity of } f
\leq \frac{1}{T} E\left(\sum_{i=1}^{T} f(x_i) \right) \quad \text{Since } E(cX) = cE(X) \text{ for constant } c
\]
Proof (2/2)

\[
E(f(z) - f(x^*)) \leq \frac{1}{T} E \left(\sum_{i=1}^{T} (f(x_i) - f(x^*)) \right) \quad \text{By previous slide}
\]

\[
\leq \frac{1}{T} \sum_{i} E (\nabla f(x_i) \cdot (x_i - x^*)) \quad \text{Using Fact 1}
\]

\[
= \frac{1}{T} \sum_{i} E (g_i \cdot (x_i - x^*)) \quad \text{Cuz } E(g_i \cdot x) = \nabla f(x_i) \cdot x
\]

\[
= \frac{1}{T} \sum_{i} E (f_i(x_i) - f_i(x^*)) \quad \text{Letting } f_i(x) = g_i \cdot x
\]

\[
= E \left(\frac{1}{T} \sum_{i} (f_i(x_i) - f_i(x^*)) \right) \quad \text{Linearity of Exp.}
\]

\[
\leq \frac{DG}{\sqrt{T}} \quad \text{Regret bound using Zinkevich’s Thm}
\]
Two Notes on Proof

• Requirement in Step 3: \(E(g_i \cdot x) = \nabla f(x_i) \cdot x \), for all \(x \)
• Holds since dot product is linear, and \(E(g_i) = \nabla f(x_i) \)

• Requirement in Last Step: \(f_i(x) \) is convex. Needed to use Zinkevich
• Holds since \(f_i(x) = g_i \cdot x \) is linear
Take Away

Gradient Descent comes in 3 basic flavors:

- Standard Gradient Descent

- Online Gradient Descent
 Works even when function is changing

- Stochastic Gradient Descent
 Just need the correct gradient in expectation