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— The Problem ——

Given:

e Convex space K
e Convex function f

Goal: Find x € K that minimizes f(x)



o convexity —

1. A convex set contains every point on every line segment
drawn between any two points in the set.

2. A convex function is one where any secant line segment is
always above the function. A secant (Latin: cut) lineis a line
segment that intersects the function at exactly two points.

e Equivalently, a function is convex if the epigraph is a con-
vex set. An epigraph (“epi” (Latin): on top of) is the set
of points above the function.

e If the function is twice differentiable, then it is convex iff
its second derivative is always non-negative.

3. A function f is concave iff —f is convex.



. . 5
— What is a gradient?

e The gradient of a function f (Vf) is just the derivatives of
f written as a vector.

e Ex: The gradient of f(x,y) = 2x + 3y is the vector (2, 3)

e Ex: The gradient of f(z,y) = z2+y2 at the pointz =2,y = 3
is (4,6)

e Ex: The gradient of f(x,y) = xzy at the point x =2,y =3 is
(3,2)



Gradient Descent Variables

—

o D = maXy; yeck |z — y|
e (G is an upperbound on |V f(x)| for any x € K

Note: all norms are 2-norms. D is known as the diameter of K



o Gradient Descent Algorithm ——

M

G\/_

Repeat for + = 0 to T

1. yit1 <z — V. [(z)
2. x;41 < Projection of y;4, 1 onto K

Output z = %Zi x;



— Theorem 1

Theorem 1 Let x* € K be the value that minimizes f. Then,
22
for any e > 0, if we set T = DGQG , then:

flz) < f(@") +e



—— Fact 1@ f(z) = f(y) < Vf(2) - (z — v)

A convex function that is differentiable satisfies the following
(basically, this says that the function is above the tangent plane
at any point).

fle+2z) > f(x) + Vi) z forall z,z

Seting z =y — x, we get.:

flz)— f(y) <Vf(z) (x—y) for all z,y



—— Proof of Theorem 1 (I) ——

yir1 — |
z; — x* — nV f(x;)|?
z; — |2 + 02|V f(z)|? — 20V f(x;) - (x5 — =)

IA

>
|Ti41 — 7]

First step holds since ;41 projects y;,4,1 onto a space that con-
tains z*. Second step holds by definition of y;+1. Last step holds

since |[v|2 =wv-w.



—— Proof of Theorem 1 (IT) ——

From last slide:

i1 — 22 < oy — ¥+ 02 V()2 - 20V () - (2 — x¥)

Reorganizing, and using definition of G-

1

Vf(x;) (x;—2") < 2

Using Fact 1:

2 n
<|$7; — " — w1 — $*|2) + EGQ

1
fla) — fa*) < 2—n(|xi—w*|2—|xz-+1—w*|2)+ga2 (1)



—— Proof of Theorem 1 (ITI) ———

Sum last inequality for : = 1 to I'. After cancellations:

d 1
> (@) = f(")) < o (lz1 — 2* = [epq1 — =) +
i=1

T
A2
2

Divide the above by T. By convexity, f ( (3, :I:Z)) 350 f(x).
Since z = %Zi x;, we get

* D2 n 2

DG Gince T =

the right hand side is at most T

Since n = G\/_

D°G% e have f(z) < f(z*) + e

€

1 N



o Online Gradient Descent

e Surprisingly, the gradient descent algorithm can work even
when the function to minimize changes in every round!

e Even if these functions are chosen by an adversary! - So long
as they are always convex.

e We just need to make a slight tweak in the algorithm (next
slide - can you spot the differences?)



C Online GD Algorithm ——

D
= GVT

Repeat for + = 0 to T

1. yit41 <z — nV fi(w;)
2. x;41 < Projection of y,4 1 onto K

1 N



C Online Gradient Theorem ——

Theorem 2 (Zinkevich’s Theorem) Let x* € K be the value
that minimizes Y ; f;(x*). Then, for all T > 0,
DG

1 *k
fzi:(fz’(wi) — fi(z™)) < Nt

Notes: The left hand side of this inequality is called the regret
per step.

1 D



Proof —

e Equation 1 from Slide 9 bounds the regret for step 1
e Sum regrets over all 2 and divide by T' to get the theorem!



C Application: Portfolio Management

e From Section 16.6 in Arora notes



C Portfolio Management —

e Imagine you are investing in n stocks
o Fori, 1 <:<mn, and t > 1, define

Price of stock + on day t

Price of stock st onday ¢t—1

e Let ™ be an optimal allocation of your money among the n
stocks in hindsight.

e Q: Can we design an algorithm that is competitive with =*7

re[i] =

1 I~



—

Portfolio Management —

Our goal: Choose an allocation, x; for each day t, that max-

imizes
H"“t - Tt
t
Taking logs, we get that we want to maximize:
> log(ry - )
t
Same as minimizing

— ) log(rs - zy)
:

T his last function is convex and so by Zinkevich's theorem,

online gradient descent tracks

— > log(ry - z*)
t



o Stochastic Gradient Descent —

T he final major trick of GD enables significant speed up. Assume
we want to minimize over just one function, f, again.

e In each step, i, we estimate the gradient of f at x; based on
one random data item

e Call this random gradient g;, where E(g;) = Vf(z;)

e [ hen, using the g;'s we get essentially same results as if we
had the true gradient

1 0



o Stochastic GD Algorithm ——

D
= GVT

Repeat for 1+ = 0 to T
1. g; + a random vector, such that E(g;) = Vf(x;)
2. Y41 < x; — NY;

3. x;41 < Projection of y,4 1 onto K

Output z = %Zi x;

1 N



—

Stochastic GD Theorem ——

Theorem 3 E(f(2)) < f(z*) +D—g.

7



—— Proof (1/2) ——

E(f(z)) = E

> f(a:z-)) By convexity of f
i=1

I
&S
& o~

IA

1

T

(Z f(a:i)) Since E(cX) = cE(X) for constant c
=1

1=



— Proof (2/2) ———

T
B(f(x) ~ f) < ZB(Y ()~ fa*))) By previous slide
1=1
< %ZE(Vf(xi)-(:ci—w*)) Using Fact 1
= 3 B (ri—x") Cuz Blgi-x) = V()

1
= fZE(fi(xi) — fi(z™)) Letting fi(z) =g;- =

1
= F (TZ (fi(x;) — fz(:c*))) Linearity of EXxp.
i
DG . , :
< — Regret bound using Zinkevich's Thm
VT



C Two Notes on Proof —

e Requirement in Step 3: E(g;-x) = Vf(x;) -z, for all x
e Holds since dot product is linear, and E(g;) = Vf(x;)

e Requirement in Last Step: f;(x) is convex. Needed to use
Zinkevich
e Holds since f;(x) = g; - x is linear



— Take Away —

Gradient Descent comes in 3 basic flavors:

e Standard Gradient Descent

e Online Gradient Descent
Works even when function is changing

e Stochastic Gradient Descent
Just need the correct gradient in expectation



