
CS 561, Randomized Algorithms

Jared Saia

University of New Mexico

Quicksort

• Based on divide and conquer strategy

• Worst case is Θ(n2)

• Expected running time is Θ(n logn)

• An In-place sorting algorithm

• Almost always the fastest sorting algorithm

1

Quicksort

• Divide: Pick some element A[q] of the array A and partition

A into two arrays A1 and A2 such that every element in A1

is ≤ A[q], and every element in A2 is > A[p]

• Conquer: Recursively sort A1 and A2

• Combine: A1 concatenated with A[q] concatenated with A2

is now the sorted version of A

2

The Algorithm

//PRE: A is the array to be sorted, p>=1;

// r is <= the size of A

//POST: A[p..r] is in sorted order

Quicksort (A,p,r){

if (p<r){

q = Partition (A,p,r);

Quicksort (A,p,q-1);

Quicksort (A,q+1,r);

}

3

Partition

//PRE: A[p..r] is the array to be partitioned, p>=1 and r <= size

// of A, A[r] is the pivot element

//POST: Let A’ be the array A after the function is run. Then

// A’[p..r] contains the same elements as A[p..r]. Further,

// all elements in A’[p..res-1] are <= A[r], A’[res] = A[r],

// and all elements in A’[res+1..r] are > A[r]

Partition (A,p,r){

x = A[r];

i = p-1;

for (j=p;j<=r-1;j++){

if (A[j]<=x){

i++;

exchange A[i] and A[j];

}}

exchange A[i+1] and A[r];

return i+1;

}

4

Correctness

Basic idea: The array is partitioned into four regions, x is the

pivot

• Region 1: Region that is less than or equal to x

(between p and i)

• Region 2: Region that is greater than x

(between i+1 and j − 1)

• Region 3: Unprocessed region

(between j and r − 1)

• Region 4: Region that contains x only

(r)

Region 1 and 2 are growing and Region 3 is shrinking

5

Loop Invariant

At the beginning of each iteration of the for loop, for any index

k:

1. If p ≤ k ≤ i then A[k] ≤ x

2. If i+1 ≤ k ≤ j − 1 then A[k] > x

3. If k = r then A[k] = x

6

Example

• Consider the array (2 6 4 1 5 3)

7

At-Home Exercise (Soln on p. 147)

• Show this invariant holds before the loop begins (Initializa-

tion)

• Show if the invariant holds after the i − 1-th iteration, that

it will hold after the i-th iteration (Maintenance)

• Show that if the invariant holds when the loop exits, that

the array will be successfully partitioned (Termination)

8

Analysis

• The function Partition takes O(n) time. Why?

9

Randomized Quick-Sort

• We’d like to ensure that we get reasonably good splits rea-

sonably quickly

• Q: How do we ensure that we “usually” get good splits?

How can we ensure this even for worst case inputs?

• A: We use randomization.

10

R-Partition

//PRE: A[p..r] is the array to be partitioned, p>=1 and r <= size

// of A

//POST: Let A’ be the array A after the function is run. Then

// A’[p..r] contains the same elements as A[p..r]. Further,

// all elements in A’[p..res-1] are <= A[i], A’[res] = A[i],

// and all elements in A’[res+1..r] are > A[i], where i is

// a random number between p and r.

R-Partition (A,p,r){

i = Random(p,r);

exchange A[r] and A[i];

return Partition(A,p,r);

}

11

Randomized Quicksort

//PRE: A is the array to be sorted, p>=1, and r is <= the size of A

//POST: A[p..r] is in sorted order

R-Quicksort (A,p,r){

if (p<r){

q = R-Partition (A,p,r);

R-Quicksort (A,p,q-1);

R-Quicksort (A,q+1,r);

}

12

Analysis

• R-Quicksort is a randomized algorithm

• The run time is a random variable

• We’d like to analyze the expected run time of R-Quicksort

• To do this, we first need to learn some basic probability

theory.

13

Probability Definitions

(from Appendix C.3)

• A random variable is a variable that takes on one of several

values, each with some probability. (Example: if X is the

outcome of the roll of a die, X is a random variable)

• The expected value of a random variable,X is defined as:

E(X) =
!

x
x ∗ P (X = x)

(Example if X is the outcome of the roll of a three sided die,

E(X) = 1 ∗ (1/3) + 2 ∗ (1/3) + 3 ∗ (1/3)

= 2

14

Probability Definitions

• Two events A and B are mutually exclusive if A
"
B is the

empty set (Example: A is the event that the outcome of a

die is 1 and B is the event that the outcome of a die is 2)

• Two random variables X and Y are independent if for all x

and y, P (X = x and Y = y) = P (X = x)P (Y = y) (Example:

let X be the outcome of the first roll of a die, and Y be the

outcome of the second roll of the die. Then X and Y are

independent.)

15

Probability Definitions

• An Indicator Random Variable associated with event A is

defined as:

! I(A) = 1 if A occurs

! I(A) = 0 if A does not occur

• Example: Let A be the event that the roll of a die comes up

2. Then I(A) is 1 if the die comes up 2 and 0 otherwise.

16

Linearity of Expectation

• Let X and Y be two random variables

• Then E(X + Y) = E(X) + E(Y)

• (Holds even if X and Y are not independent.)

• More generally, let X1, X2, . . . , Xn be n random variables

• Then

E(
n!

i=1

Xi) =
n!

i=1

E(Xi)

17

Example

• For 1 ≤ i ≤ n, let Xi be the outcome of the i-th roll of

three-sided die

• Then

E(
n!

i=1

Xi) =
n!

i=1

E(Xi) = 2n

18

Example

• Indicator Random Variables and Linearity of Expectation used

together are a very powerful tool

• The Birthday Paradox illustrates this point

• To analyze the run time of Quicksort, we will also use indica-

tor r.v.’s and linearity of expectation (analysis will be similar

to “birthday paradox” problem)

19

Birthday Paradox

• Assume there are k people in a room, and n days in a year

• Assume that each of these k people is born on a day chosen

uniformly at random from the n days

• Q: What is the expected number of pairs of individuals that

have the same birthday?

• We can use indicator random variables and linearity of ex-

pectation to compute this

20

Analysis

• For all 1 ≤ i < j ≤ k, let Xi,j be an indicator random variable

defined such that:

– Xi,j = 1 if person i and person j have the same birthday

– Xi,j = 0 otherwise

• Note that for all i, j,

E(Xi,j) = P (person i and j have same birthday)

= 1/n

21

Analysis

• Let X be a random variable giving the number of pairs of

people with the same birthday

• We want E(X)

• Then X =
#

1≤i<j≤kXi,j

• So E(X) = E(
#

1≤i<j≤kXi,j)

22

Analysis

E(X) = E(
!

1≤i<j≤k

Xi,j)

=
!

1≤i<j≤k

E(Xi,j)

=
!

1≤i<j≤k

1/n

=
$k
2

%1
n

=
k(k − 1)

2n
The second step follows by Linearity of Expectation

23

Reality Check

• Thus, if k(k − 1) ≥ 2n, expected number of pairs of people

with same birthday is at least 1

• Thus if have at least
√
2n people in the room, expected

number of pairs with same birthday is at least 1.

• For n = 365, if k = 28, expected number of pairs with same

birthday is 1.04

24

In-Class Exercise

• Assume there are k people in a room, and n days in a year

• Assume that each of these k people is born on a day chosen

uniformly at random from the n days

• Let X be the number of groups of three people who all have

the same birthday. What is E(X)?

• Let Xi,j,k be an indicator r.v. which is 1 if people i,j, and k

have the same birthday and 0 otherwise

25

In-Class Exercise

• Q1: Write the expected value of X as a function of the Xi,j,k

(use linearity of expectation)

• Q2: What is E(Xi,j,k)?

• Q3: What is the total number of groups of three people out

of k?

• Q4: What is E(X)?

26

Plan of Attack

“If you get hold of the head of a snake, the rest of it is mere

rope” - Akan Proverb

• We will analyze the total number of comparisons made by

quicksort

• We will let X be the total number of comparisons made by

R-Quicksort

• We will write X as the sum of a bunch of indicator random

variables

• We will use linearity of expectation to compute the expected

value of X

27

Notation

• Let A be the array to be sorted

• Let zi be the i-th smallest element in the array A

• Let Zi,j = {zi, zi+1, . . . , zj}

28

Indicator Random Variables

• Let Xi,j be 1 if zi is compared with zj and 0 otherwise

• Note that X =
#n−1

i=1
#n

j=i+1Xi,j

• Further note that

E(X) = E(
n−1!

i=1

n!

j=i+1

Xi,j) =
n−1!

i=1

n!

j=i+1

E(Xi,j)

29

Questions

• Q1: So what is E(Xi,j)?

• A1: It is P (zi is compared to zj)

• Q2: What is P (zi is compared to zj)?

• A2: It is:

P (either zi or zj are the first elems in Zi,j chosen as pivots)

• Why?

– If no element in Zi,j has been chosen yet, no two elements

in Zi,j have yet been compared, and all of Zi,j is in same

list

– If some element in Zi,j other than zi or zj is chosen first,

zi and zj will be split into separate lists (and hence will

never be compared)

30

More Questions

• Q: What is

P (either zi or zj are first elems in Zi,j chosen as pivots)

• A: P (zi chosen as first elem in Zi,j) +

P (zj chosen as first elem in Zi,j)

• Further note that number of elems in Zi,j is j − i+1, so

P (zi chosen as first elem in Zi,j) =
1

j − i+1

and

P (zj chosen as first elem in Zi,j) =
1

j − i+1

• Hence

P (zi or zj are first elems in Zi,j chosen as pivots) =
2

j − i+1

31

Conclusion

E(Xi,j) = P (zi is compared to zj) (1)

=
2

j − i+1
(2)

32

Putting it together

E(X) = E(
n−1!

i=1

n!

j=i+1

Xi,j) (3)

=
n−1!

i=1

n!

j=i+1

E(Xi,j) (4)

=
n−1!

i=1

n!

j=i+1

2

j − i+1
(5)

=
n−1!

i=1

n−i!

k=1

2

k +1
(6)

<
n−1!

i=1

n!

k=1

2

k
(7)

=
n−1!

i=1

O(logn) (8)

= O(n logn) (9)

33

Questions

• Q: Why is
#n

k=1
2
k = O(logn)?

• A:
n!

k=1

2

k
= 2

n!

k=1

1/k (10)

≤ 2(lnn+1) (11)

• Where the last step follows by an integral bound on the sum

(p. 1067)

34

How Fast Can We Sort?

• Q: What is a lowerbound on the runtime of any sorting al-

gorithm?

• We know that Ω(n) is a trivial lowerbound

• But all the algorithms we’ve seen so far are O(n logn) (or

O(n2)), so is Ω(n logn) a lowerbound?

35

Comparison Sorts

• Definition: An sorting algorithm is a comparison sort if the

sorted order they determine is based only on comparisons

between input elements.

• Heapsort, mergesort, quicksort, bubblesort, and insertion sort

are all comparison sorts

• We will show that any comparison sort must take Ω(n logn)

36

Comparisons

• Assume we have an input sequence A = (a1, a2, . . . , an)

• In a comparison sort, we only perform tests of the form ai <

aj, ai ≤ aj, ai = aj, ai ≥ aj, or ai > aj to determine the

relative order of all elements in A

• We’ll assume that all elements are distinct, and so note that

the only comparison we need to make is ai ≤ aj.

• This comparison gives us a yes or no answer

37

Decision Tree Model

• A decision tree is a full binary tree that gives the possible

sequences of comparisons made for a particular input array,

A

• Each internal node is labelled with the indices of the two

elements to be compared

• Each leaf node gives a permutation of A

38

Decision Tree Model

• The execution of the sorting algorithm corresponds to a path

from the root node to a leaf node in the tree.

• We take the left child of the node if the comparison is ≤ and

we take the right child if the comparison is >

• The internal nodes along this path give the comparisons

made by the alg, and the leaf node gives the output of the

sorting algorithm.

39

Leaf Nodes

• Any correct sorting algorithm must be able to produce each

possible permutation of the input

• Thus there must be at least n! leaf nodes

• The length of the longest path from the root node to a leaf

in this tree gives the worst case run time of the algorithm

(i.e. the height of the tree gives the worst case runtime)

40

Example

• Consider the problem of sorting an array of size two: A =

(a1, a2)

• Following is a decision tree for this problem.

a1<=a2?

yes no

(a1,a2) (a2,a1)

41

In-Class Exercise

• Give a decision tree for sorting an array of size three: A =

(a1, a2, a3)

• What is the height? What is the number of leaf nodes?

42

Height of Decision Tree

• Q: What is the height of a binary tree with at least n! leaf

nodes?

• A: If h is the height, we know that 2h ≥ n!

• Taking log of both sides, we get h ≥ log(n!)

43

Height of Decision Tree

• Q: What is log(n!)?

• A: It is

log(n ∗ (n− 1) ∗ · · · ∗ 1) = logn+ log(n− 1) + · · ·+ log1

≥ (n/2) log(n/2)

≥ (n/2)(logn− log 2)

= Ω(n logn)

• Thus any decision tree for sorting n elements will have a

height of Ω(n logn)

44

Take Away

• We’ve just proven that any comparison-based sorting algo-

rithm takes Ω(n logn) time

• This does not mean that all sorting algorithms take Ω(n logn)

time

• In fact, there are non comparison-based sorting algorithms

which, under certain circumstances, are asymptotically faster.

45

Bucket Sort

• Bucket sort assumes that the input is drawn from a uniform

distribution over the range [0,1)

• Basic idea is to divide the interval [0,1) into n equal size

regions, or buckets

• We expect that a small number of elements in A will fall into

each bucket

• To get the output, we can sort the numbers in each bucket

and just output the sorted buckets in order

46

Bucket Sort

//PRE: A is the array to be sorted, all elements in A[i] are between

0 and 1 inclusive.

//POST: returns a list which is the elements of A in sorted order

BucketSort(A){

B = new List[]

n = length(A)

for (i=1;i<=n;i++){

insert A[i] at end of list B[floor(n*A[i])];

}

for (i=0;i<=n-1;i++){

sort list B[i] with insertion sort;

}

return the concatenated list B[0],B[1],...,B[n-1];

}

47

Bucket Sort

• Claim: If the input numbers are distributed uniformly over

the range [0,1), then Bucket sort takes expected time O(n)

• Let T (n) be the run time of bucket sort on a list of size n

• Let ni be the random variable giving the number of elements

in bucket B[i]

• Then T (n) = Θ(n) +
#n−1

i=0 O(n2i)

48

Analysis

• We know T (n) = Θ(n) +
#n−1

i=0 O(n2i)

• Taking expectation of both sides, we have

E(T (n)) = E(Θ(n) +
n−1!

i=0

O(n2i))

= Θ(n) +
n−1!

i=0

E(O(n2i))

= Θ(n) +
n−1!

i=0

(O(E(n2i)))

• The second step follows by linearity of expectation

• The last step holds since for any constant a and random

variable X, E(aX) = aE(X) (see Equation C.21 in the text)

49

Analysis

• We claim that E(n2i) = 2− 1/n

• To prove this, we define indicator random variables: Xij = 1

if A[j] falls in bucket i and 0 otherwise (defined for all i,

0 ≤ i ≤ n− 1 and j, 1 ≤ j ≤ n)

• Thus, ni =
#n

j=1Xij

• We can now compute E(n2i) by expanding the square and

regrouping terms

50

Analysis

E(n2i) = E((
n!

j=1

Xij)
2)

= E(
n!

j=1

n!

k=1

XijXik)

= E(
n!

j=1

X2
ij +

!

1≤j≤n

!

1≤k≤n,k ∕=j

XijXik)

=
n!

j=1

E(X2
ij) +

!

1≤j≤n

!

1≤k≤n,k ∕=j

E(XijXik))

51

Analysis

• We can evaluate the two summations separately. Xij is 1

with probability 1/n and 0 otherwise

• Thus E(X2
ij) = 1 ∗ (1/n) + 0 ∗ (1− 1/n) = 1/n

• Where k ∕= j, the random variables Xij and Xik are indepen-

dent

• For any two independent random variables X and Y , E(XY) =

E(X)E(Y) (see C.3 in the book for a proof of this)

• Thus we have that

E(XijXik) = E(Xij)E(Xik)

= (1/n)(1/n)

= (1/n2)

52

Analysis

• Substituting these two expected values back into our main

equation, we get:

E(n2i) =
n!

j=1

E(X2
ij) +

!

1≤j≤n

!

1≤k≤n,k ∕=j

E(XijXik))

=
n!

j=1

(1/n) +
!

1≤j≤n

!

1≤k≤n,k ∕=j

(1/n2)

= n(1/n) + (n)(n− 1)(1/n2)

= 1+ (n− 1)/n

= 2− (1/n)

53

Analysis

• Recall that E(T (n)) = Θ(n) +
#n−1

i=0(O(E(n2i)))

• We can now plug in the equation E(n2i) = 2− (1/n) to get

E(T (n)) = Θ(n) +
n−1!

i=0

2− (1/n)

= Θ(n) +Θ(n)

= Θ(n)

• Thus the entire bucket sort algorithm runs in expected linear

time

54

