CS 561, Randomized Data Structures: Hash Tables, Skip Lists, Bloom Filters, Count-Min sketch

Jared Saia
University of New Mexico
Outline

- Hash Tables
- Skip Lists
- Count-Min Sketch
Dictionary ADT

A dictionary ADT implements the following operations

- $\text{Insert}(x)$: puts the item x into the dictionary
- $\text{Delete}(x)$: deletes the item x from the dictionary
- $\text{IsIn}(x)$: returns true iff the item x is in the dictionary
Dictionary ADT

- Frequently, we think of the items being stored in the dictionary as *keys*.
- The keys typically have *records* associated with them which are carried around with the key but not used by the ADT implementation.
- Thus we can implement functions like:
 - *Insert(k,r)*: puts the item (k,r) into the dictionary if the key k is not already there, otherwise returns an error.
 - *Delete(k)*: deletes the item with key k from the dictionary.
 - *Lookup(k)*: returns the item (k,r) if k is in the dictionary, otherwise returns null.
Implementing Dictionaries

- The simplest way to implement a dictionary ADT is with a linked list
- Let l be a linked list data structure, assume we have the following operations defined for l
 - `head(l)`: returns a pointer to the head of the list
 - `next(p)`: given a pointer p into the list, returns a pointer to the next element in the list if such exists, null otherwise
 - `previous(p)`: given a pointer p into the list, returns a pointer to the previous element in the list if such exists, null otherwise
 - `key(p)`: given a pointer into the list, returns the key value of that item
 - `record(p)`: given a pointer into the list, returns the record value of that item
At-Home Exercise

Implement a dictionary with a linked list

- Q1: Write the operation Lookup(k) which returns a pointer to the item with key k if it is in the dictionary or null otherwise
- Q2: Write the operation Insert(k,r)
- Q3: Write the operation Delete(k)
- Q4: For a dictionary with n elements, what is the runtime of all of these operations for the linked list data structure?
- Q5: Describe how you would use this dictionary ADT to count the number of occurrences of each word in an online book.
Dictionaries

- This linked list implementation of dictionaries is very slow
- Q: Can we do better?
- A: Yes, with hash tables, AVL trees, etc
Hash Tables

Hash Tables implement the Dictionary ADT, namely:

- Insert(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Lookup(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Delete(x) - $O(1)$ expected time, $\Theta(n)$ worst case
Direct Addressing

- Suppose universe of keys is $U = \{0, 1, \ldots, m - 1\}$, where m is not too large
- *Assume no two elements have the same key*
- We use an array $T[0..m-1]$ to store the keys
- Slot k contains the elem with key k
Direct Address Functions

DA-Search(T,k){ return T[k];}
DA-Insert(T,x){ T[key(x)] = x;}
DA-Delete(T,x){ T[key(x)] = NIL;}

Each of these operations takes $O(1)$ time
Direct Addressing Problem

- If universe U is large, storing the array T may be impractical
- Also much space can be wasted in T if number of objects stored is small
- Q: Can we do better?
- A: Yes we can trade time for space
• “Key” Idea: An element with key k is stored in slot $h(k)$, where h is a hash function mapping U into the set $\{0, \ldots, m-1\}$
• Main problem: Two keys can now hash to the same slot
• Q: How do we resolve this problem?
• A1: Try to prevent it by hashing keys to “random” slots and making the table large enough
• A2: Chaining
• A3: Open Addressing
Chained Hash

In chaining, all elements that hash to the same slot are put in a linked list.

\[
\begin{align*}
\text{CH-Insert}(T, x) & \{ \text{Insert x at the head of list } T[h(key(x))] \}; \\
\text{CH-Search}(T, k) & \{ \text{search for elem with key k in list } T[h(k)] \}; \\
\text{CH-Delete}(T, x) & \{ \text{delete x from the list } T[h(key(x))] \}; \\
\end{align*}
\]
Analysis

- CH-Insert takes $O(1)$ time if the list is doubly linked and there are no duplicate keys
- Q: How long does CH-Search and CH-Delete take?
- A: It depends. In particular, depends on the load factor, $\alpha = n/m$ (i.e. average number of elems in a list)
CH-Search Analysis

- Worst case analysis: everyone hashes to one slot so $\Theta(n)$
- For average case, make the \textit{simple uniform hashing} assumption: any given elem is equally likely to hash into any of the m slots, indep. of the other elems
- Let n_i be a random variable giving the length of the list at the i-th slot
- Then time to do a search for key k is $1 + n_{h(k)}$
CH-Search Analysis

- Q: What is $E(n_{h(k)})$?
- A: We know that $h(k)$ is uniformly distributed among $\{0, \ldots, m-1\}$
- Thus, $E(n_{h(k)}) = \sum_{i=0}^{m-1} (1/m)n_i = n/m = \alpha$
Hash Functions

- Want each key to be equally likely to hash to any of the m slots, independently of the other keys
- Key idea is to use the hash function to “break up” any patterns that might exist in the data
- We will always assume a key is a natural number (can e.g. easily convert strings to naturaly numbers)
Division Method

- $h(k) = k \mod m$
- Want m to be a *prime number*, which is not too close to a power of 2
- Why? Reduces collisions in the case where there is periodicity in the keys inserted
Hash Tables Wrapup

Hash Tables implement the Dictionary ADT. Assuming $n = O(m)$ we have:

- Insert(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Lookup(x) - $O(1)$ expected time, $\Theta(n)$ worst case
- Delete(x) - $O(1)$ expected time, $\Theta(n)$ worst case
Skip List

- Enables insertions and searches for ordered keys in $O(\log n)$ expected time
- Very elegant randomized data structure, simple to code but analysis is subtle
- They guarantee that, with high probability, all the major operations take $O(\log n)$ time (e.g. Find-Max, Predecessor/Successor)
- Can even enable ”find-i-th value” if store with each edge the number of elements that edge skips
Skip List

- A skip list is basically a collection of doubly-linked lists, L_1, L_2, \ldots, L_x, for some integer x
- Each list has a special head and tail node, the keys of these nodes are assumed to be $-\text{MAXNUM}$ and $+\text{MAXNUM}$ respectively
- The keys in each list are in sorted order (non-decreasing)
Skip List

- Every node is stored in the bottom list
- For each node in the bottom list, we flip a coin over and over until we get tails. For each heads, we make a duplicate of the node.
- The duplicates are stacked up in levels and the nodes on each level are strung together in sorted linked lists
- Each node v stores a search key ($\text{key}(v)$), a pointer to its next lower copy ($\text{down}(v)$), and a pointer to the next node in its level ($\text{right}(v)$).
Search

- To do a search for a key, x, we start at the leftmost node L in the highest level.
- We then scan through each level as far as we can without passing the target value x and then proceed down to the next level.
- The search ends either when we find the key x or fail to find x on the lowest level.
SkipListFind(x, L){
 v = L;
 while (v != NULL) and (Key(v) != x){
 if (Key(Right(v)) > x)
 v = Down(v);
 else
 v = Right(v);
 }
 return v;
}
Search Example
coin() returns "heads" with probability 1/2

Insert(k){
First call Search(k), let pLeft be the leftmost elem <= k in L_1
Insert k in List 0, to the right of pLeft
i = 1;
while (coin() = "heads"){
 insert k in List i;
 i++;
}

Deletion

- Deletion is very simple
- First do a search for the key to be deleted
- Then delete that key from all the lists it appears in from the bottom up, making sure to “zip up” the lists after the deletion
Analysis

- Intuitively, each level of the skip list has about half the number of nodes of the previous level, so we expect the total number of levels to be about $O(\log n)$
- Similarly, each time we add another level, we cut the search time in half except for a constant overhead
- So after $O(\log n)$ levels, we would expect a search time of $O(\log n)$
- We will now formalize these two intuitive observations
Height of Skip List

- For some key, k, let X_k be the maximum height of k in the skip list.
- Q: What is the probability that $X_k \geq 2 \log n$?
- A: If $p = 1/2$, we have:

$$
P(X_k \geq 2 \log n) = \left(\frac{1}{2}\right)^{2 \log n}
= \frac{1}{(2^{\log n})^2}
= \frac{1}{n^2}
$$

- Thus the probability that a particular key k achieves height $2 \log n$ is $\frac{1}{n^2}$
Height of Skip List

• Q: What is the probability that any key achieves height $2 \log n$?
• A: We want

$$P(X_1 \geq 2 \log n \text{ or } X_2 \geq 2 \log n \text{ or } \ldots \text{ or } X_n \geq 2 \log n)$$

• By a Union Bound, this probability is no more than

$$P(X_1 \geq 2 \log n) + P(X_2 \geq 2 \log n) + \cdots + P(X_n \geq 2 \log n)$$

• Which equals:

$$\sum_{i=1}^{n} \frac{1}{n^2} = \frac{n}{n^2} = 1/n$$
Height of Skip List

- This probability gets small as n gets large
- In particular, the probability of having a skip list of height exceeding $2 \log n$ is $o(1)$
- If an event occurs with probability $1 - o(1)$, we say that it occurs with high probability
- Key Point: The height of a skip list is $O(\log n)$ with high probability.
A trick for computing expectations of discrete positive random variables:

- Let X be a discrete r.v., that takes on values from 1 to n

$$E(X) = \sum_{i=1}^{n} P(X \geq i)$$
Why?

\[
\sum_{i=1}^{n} P(X \geq i) = P(X = 1) + P(X = 2) + P(X = 3) + \ldots \\
+ P(X = 2) + P(X = 3) + P(X = 4) + \ldots \\
+ P(X = 3) + P(X = 4) + P(X = 5) + \ldots \\
+ \ldots \\
= 1 \times P(X = 1) + 2 \times P(X = 2) + 3 \times P(X = 3) + \ldots \\
= E(X)
\]
In-Class Exercise

Q: How much memory do we expect a skip list to use up?

• Let \(X_k \) be the number of lists that key \(k \) is inserted in.
• Q: What is \(P(X_k \geq 1) \), \(P(X_k \geq 2) \), \(P(X_k \geq 3) \)?
• Q: What is \(P(X_k \geq i) \) for \(i \geq 1 \)?
• Q: What is \(E(X_k) \)?
• Q: Let \(X = \sum_{k=1}^{n} X_k \). What is \(E(X) \)?
Search Time

- It's easier to analyze the search time if we imagine running the search backwards.
- Imagine that we start at the found node \(v \) in the bottommost list and we trace the path backwards to the top leftmost sentinel, \(L \).
- This will give us the length of the search path from \(L \) to \(v \) which is the time required to do the search.
Backwards Search

SLFback(v){
 while (v != L){
 if (Up(v)!=NIL)
 v = Up(v);
 else
 v = Left(v);
 }
}
Backward Search

- For every node v in the skip list $\text{Up}(v)$ exists with probability $1/2$. So for purposes of analysis, SLFBack is the same as the following algorithm:

```plaintext
FlipWalk(v)
{
    while (v != L)
    {
        if (COINFLIP == HEADS)
            v = Up(v);
        else
            v = Left(v);
    }
}
```
Analysis

- For this algorithm, the expected number of heads is exactly the same as the expected number of tails
- Thus the expected run time of the algorithm is twice the expected number of upward jumps
- Since we already know that the number of upward jumps is $O(\log n)$ with high probability, we can conclude that the expected search time is $O(\log n)$
Bloom Filters

- Randomized data structure for representing a set. Imple-ments:
 - Insert(x) :
 - IsMember(x) :
- Allow false positives but require very little space
- Used frequently in: Databases, networking problems, p2p networks, packet routing
Bloom Filters

- Have m slots, k hash functions, n elements; assume hash functions are all independent
- Each slot stores 1 bit, initially all bits are 0
- Insert(x) : Set the bit in slots $h_1(x), h_2(x), ..., h_k(x)$ to 1
- IsMember(x) : Return yes iff the bits in $h_1(x), h_2(x), ..., h_k(x)$ are all 1
Analysis Sketch

- m slots, k hash functions, n elements; assume hash functions are all independent
- Then $P(\text{fixed slot is still 0}) = (1 - 1/m)^{kn}$
- Useful fact from Taylor expansion of e^{-x}:

 \[
 e^{-x} - x^2/2 \leq 1 - x \leq e^{-x} \quad \text{for } x < 1
 \]
- Then if $x \leq 1$

 \[
 e^{-x}(1 - x^2) \leq 1 - x \leq e^{-x}
 \]
Analysis

- Thus we have the following to good approximation.

\[Pr(\text{fixed slot is still 0}) = (1 - 1/m)^{kn} \]
\[\approx e^{-kn/m} \]

- Let \(p = e^{-kn/m} \) and let \(\rho \) be the fraction of 0 bits after \(n \) elements inserted then

\[Pr(\text{false positive}) = (1 - \rho)^k \approx (1 - p)^k \]

- Where this last approximation holds because \(\rho \) is very close to \(p \) (by a Martingale argument beyond the scope of this class)
• Want to minimize $(1 - p)^k$, which is equivalent to minimizing
 \[g = k \ln(1 - p) \]
 • Trick: Note that \[g = -(m/n) \ln(p) \ln(1 - p) \]
 • By symmetry, this is minimized when \(p = 1/2 \) or equivalently
 \[k = \frac{m}{n} \ln 2 \]
 • False positive rate is then \((1/2)^k \approx (0.6185)^{m/n}\)
Tricks

• Can get the union of two sets by just taking the bitwise-or of the bit-vectors for the corresponding Bloom filters
• Can easily half the size of a bloom filter - assume size is power of 2 then just bitwise-or the first and second halves together
• Can approximate the size of the intersection of two sets - inner product of the bit vectors associated with the Bloom filters is a good approximation to this.
Extensions

- Bloomier Filters: Also allow for data to be inserted in the filter - similar functionality to hash tables but less space, and the possibility of false positives.
Data Streams

- A router forwards packets through a network
- A natural question for an administrator to ask is: what is the list of substrings of a fixed length that have passed through the router more than a predetermined threshold number of times
- This would be a natural way to try to, for example, identify worms and spam
- Problem: the number of packets passing through the router is *much* too high to be able to store counts for every substring that is seen!
Data Streams

- This problem motivates the data stream model
- Informally: there is a stream of data given as input to the algorithm
- The algorithm can take at most one pass over this data and must process it sequentially
- The memory available to the algorithm is much less than the size of the stream
- In general, we won’t be able to solve problems exactly in this model, only approximate
Our Problem

- We are presented with a stream of items i
- We want to get a good approximation to the value $\text{Count}(i, T)$, which is the number of times we have seen item i up to time T
Count-Min Sketch

- Our solution will be to use a data structure called a Count-Min Sketch
- This is a randomized data structure that will keep approximate values of Count(i,T)
- It is implemented using k hash functions and m counters
Count-Min Sketch

- Think of our m counters as being in a 2-dimensional array, with m/k counters per row and k rows
- Let $C_{a,b}$ be the counter in row a and column b
- Our hash functions map items from the universe into counters
- In particular, hash function h_a maps item i to counter $C_{a,h_a(i)}$
Updates

- Initially all counters are set to 0
- When we see item i in the data stream we do the following
- For each $1 \leq a \leq k$, increment $C_{a,h_a(i)}$
Count Approximations

- Let $C_{a,b}(T)$ be the value of the counter $C_{a,b}$ after processing T tuples
- We approximate Count(i, T) by returning the value of the smallest counter associated with i
- Let $m(i, T)$ be this value
Main Theorem:

- For any item i, $m(i, T) \geq \text{Count}(i, T)$
- With probability at least $1 - e^{-m\epsilon/e}$ the following holds: $m(i, T) \leq \text{Count}(i, T) + \epsilon T$
Proof

- Easy to see that $m(i, T) \geq \text{Count}(i, T)$, since each counter $C_{a, h_a(i)}$ incremented by c_t every time pair (i, c_t) is seen.
- Hard Part: Showing $m(i, T) \leq \text{Count}(i, T) + \epsilon T$.
- To see this, we will first consider the specific counter $C_{1, h_1(i)}$ and then use symmetry.
Proof

- Let Z_1 be a random variable giving the amount the counter is incremented by items other than i
- Let X_t be an indicator r.v. that is 1 if j is the t-th item, and $j \neq i$ and $h_1(i) = h_1(j)$
- Then $Z_1 = \sum_{t=1}^{T} X_t$
- But if the hash functions are “good”, then if $i \neq j$, $Pr(h_1(i) = h_1(j)) \leq k/m$ (specifically, we need the hash functions to come from a 2-universal family, but we won’t get into that in this class)
- Hence, $E(X_t) \leq k/m$
Proof

- Thus, by linearity of expectation, we have that:

\[
E(Z_1) = \sum_{t=1}^{T} \left(\frac{k}{m} \right) \leq \frac{Tk}{m}
\]

(1)

(2)

- We now need to make use of a very important inequality: Markov’s inequality
Markov’s Inequality

- Let X be a random variable that only takes on non-negative values
- Then for any $\lambda > 0$:

$$Pr(X \geq \lambda) \leq E(X)/\lambda$$

- Proof of Markov's: Assume instead that there exists a λ such that $Pr(X \geq \lambda)$ was actually larger than $E(X)/\lambda$
- But then the expected value of X would be at least $\lambda \cdot Pr(X \geq \lambda) > E(X)$, which is a contradiction!!!
Proof

- Now, by Markov’s inequality,

\[\Pr(Z_1 \geq \epsilon T') \leq \frac{(Tk/m)}{(\epsilon T')} = \frac{k}{(m\epsilon)} \]

- This is the event where \(Z_1 \) is “bad” for item \(i \).
Proof (Cont’d)

- Now again assume our k hash functions are “good” in the sense that they are independent
- Then we have that

$$\prod_{i=1}^{k} \Pr(Z_j \geq \epsilon T) \leq \left(\frac{k}{m\epsilon} \right)^k$$
Proof

• Finally, we want to choose a k that minimizes $f(k) = \left(\frac{k}{m\epsilon}\right)^k$
• Note that $\frac{\partial f}{\partial k} = \left(\frac{k}{m\epsilon}\right)^k \left(\ln \frac{k}{m\epsilon} + 1\right)$
• From this, we can see that the probability is minimized when $k = m\epsilon/e$, in which case

$$\left(\frac{k}{m\epsilon}\right)^k = e^{-m\epsilon/e}$$

• This completes the proof!
Recap

- Our Count-Min Sketch is very good at giving estimating counts of items with very little external space.
- Tradeoff is that it only provides approximate counts, but we can bound the approximation!
- Note: Can use the Count-Min Sketch to keep track of all the items in the stream that occur more than a given threshold ("heavy hitters")
- Basic idea is to store an item in a list of "heavy hitters" if its count estimate ever exceeds some given threshold.