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o Outline

e SET-COVER
o MAX-SAT




— SET-COVER —_

e Given a universe of elements U = {1,...m}, and a family of
subsets of U called S

e For every § €8, there is a weight wg

e Goal: Find a cover C C S of minimum weight > g-cwg.

e A set C is a cover, if for all + € U, there is a set S € C such
that 2 € S.



— SET-COVER —_

e SET-COVER is NP-HARD (to show, reduce from VERTEX-
COVER)

e \Want to solve this problem frequently in e.g. computational
biology

e [ here is an interesting approximation algorithm for it though

e IDEA: Solve an LP; Use the setting in the solution to assign
probabilities to indicator rv's; Round these rv's



—— The Integer Program (IP) ——

Minimize: Y gcswgTg

Subject to:
> Sicsxs > 1, VeelU

rg € {0,1}, VS €S



—— The Linear Program (LP) ——

Minimize: Y gcswgzg

Subject to:
>siesrs > 1, VieU

OSCESgl,VSES



— AnalysiS —

e IDEA: Solve this LP in polynomial time

e PROBLEM: It gives us xg € [0, 1] for all S. How do we decide
whether to choose each set?

e IDEA: Choose set S with probability zg



Example

—

o U ={a,b,c}
e 51 = {CL, b}r So = {CL, C}, S3 = {ba C}
o wg = 1 for all sets S



C Example ——

e U ={a,b,c}
e 51 = {a’7 b}, So = {CL, C}; S3 = {b7 C}
e wg = 1 for all sets S

LP Solution: z] =25 =23 =1/2
Let R be the sets in the rounding
Example Rounding: R = {S1, S5}
Success! This gives a cover with optimal weight



C Fact 1: Expected weight of R is no

more than expected weight of OPT . ———

e Proof: For each possible set §, let Xg be an indicator r.v.
that is 1 iff S € R. Then we have

E (Z w5> =F (%wSXS) = %wSE(XS) = %wswg

SeR

e [ he last term is the weight of the LP solution which is at
most the weight of the optimal solution.



— Fact 2: Every element 2+ € U is covered

by R with probability at least 1 — 1/e

e Proof: Fix an element ¢« € U. Let T be the sets in S that
contain z. Then

Pr(i is not covered by R) Il Pr(S¢R)
SeT
= || (1—-2%)
SeT
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— Problem: May not always get a cover

e Problem: Each item covered with probability 1 — 1/e, but

likely that some item not covered.
e Idea: Round multiple times to get a cover with high proba-

bility.
e Increases the weight, but only by a logarithmic amount
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— Algorithm 1 ——

1. Let =™ be a solution to the relaxed LP
2. Fort=1 to 2Inm do

(a) Add each set S to R; with probability = independently
3. Return |U; Ry
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— AnalysisS ——

Theorem 1: In one run with probability 1/4, Algorithm 1 (1)
returns a cover, (2) with total weight at most 4Inm - OPT.

Proof: (1) For a fixed i, By Fact 1 and independence, we have

—2Inm 2

Pr(i not covered) <e =m

Thus, by a union bound:

IS

Pr(any of the m elements uncovered) < m~1 <

(2) By Fact 2, expected weight of sets added in one iteration of
the for loop is at most OPT. By linearity, expected weight over
2Inm iterations is at most 2Inm - OPT. Let W be the weight
of the sets returned by the algorithm. By Markov’s inequality,
Pr(W >2E(W)) <1/2.

By a final union bound, with probability at least 1/4 we have a
cover with the weight at most 4Ilnm - OPT'.
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— CONCLUSION —

e Algorithm 1 returns a valid set cover with weight at most
4 Inm times the optimal weight set-cover with probability of
failure at most 1/4. Thus, after running it at most 4 times
in expectation, we'd expect to have a cover that has total
weight at most 4Inm - OPT..

e It critically relies on a solution to the LP to guide the ran-
domized part of the algorithm.

e Next, we'll see another example of this approach for the
MAX-SAT problem
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— MAX-K-SAT ——

e Imagine that we have some CNF boolean function, where
each clause has exactly k literals for some integer k.

e Each clause Cj has a set of positive variables P; and a set of
negative variables N,

e Our goal is to set truth values to the variables in order to
maximize the number of satisfied clauses

e IDEA: Solve an LP; Use the settings in this solution to assign
probabilities to indicator r.v.'s; Round these r.v.’s.
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—— T he Linear Program (LP) ———

Maximize: Zj Zj

Subject to:
zj < 2iep; ¥i + 2Zien; (L —w3), VC;
0<y, <1, Vy,

OSZJSJ.,\V/Z]

1A



— The Algorithm —

e \Write an LP for the boolean formula as in the previous slide
e Let y be the settings found in the solution found for the LP

e For each variable ¢, set i« to TRUE with probability y and
FALSE otherwise
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— Analysis Background

e Convex/Concave Functions
e Arithmetic/Geometric Mean inequality
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— Convex Functions ——

e A function, f, is convex if for all inputs x and y and for all
A e [0,1]:

FOz+(1=MNy) <Af(z) + (1 =) f(y)

e Key fact: If f has a second derivative, then f is convex iff
the second derivative is always non-negative.
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C Concave FunctionS ——

e A concave function is the negative of a convex function
e A function, f, is concave if for all inputs = and y and for all
A€ [0, 1]:
fOz+ (1 =XNy) > Af(z) + (1 - N f(y)

e Key fact: If f has a second derivative, then f is concave iff
the second derivative is always negative.
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GM < AM

e For any non-negative z1,xo, ...,z , the geometric mean is at
most equal to the arithmetic mean

o (m1zo...2p) VR < (1/k)(z1 + 22+ ... 4+ 21)
e Easy to see this for 2 variables: \/zy < (1/2)(z + y)
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C Probability Cj IS not satisfied —

e FiX some clause Cj and let Pj be the set of positive and Nj
be the set of negative variables in Cj
e [ hen the probability that the clause is not satisfied is

k
1
HO-vD) v < (7| 2Q-vD+ > v
iGPj iGNj iEPj iENj
k
1
= |1-7 doui+ > (=)
?:Epj iENj

k
2
k

First inequality holds since GM < AM.
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— Using Concavity —

N
e Probability that C; is satisfied is: 1 — (1 - %ﬂ)

*

N
o f(z;-‘) =1- (1 — %7) is concave over z7 € [0, 1]

e Hence: For any z and y and all X € [0, 1]:

fQz+ (1 —=XNy) > Af(z) + (1 =) f(y)
e Specifically if x =0 and y =1, then

f(L=X) =1 -=XN)f(1)
e Setting 1 — )\ to be z;‘ we get that

f(z5) > 25 (1 — (1 — %)k>



—

Bounding with Concave Property
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Using Linearity of Expectation

—

k
e Probability that C; is satisfied is > 2 (1 - (1-%) )
o Let W be the number of clauses satisfied by our algorithm,
and let W; be an indicator r.v. that is 1 iff Cj is satisfied.

EW) = Z E(W;)
J

> %:z;‘ (1—(1—%)k>

> min (1 — (1 — %)k> %:z;k
> mkin <1— (1—%)/%) OPT
> (1—-1/e)OPT

> .632-0OPT

() ™



C Step 5 of Last Slide ——

e For step 5 of last slide, note that since 1 —x < e %

(1-1/k)F <e™t
e So for any value of k,
1—(1-1/k)F>1—-1/e
e Just FYI, it's also true that
im (1 —1/k)F =t
k— 00
Since

im (14 1/k)F=e
k—o00
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— Take Away —

e Many real-world problems can be shown to not have an effi-
cient solution unless P = NP (these are the NP-Hard prob-
lems)

e However, if a problem is shown to be NP-Hard, all hope is
not lost!

e In many cases, we can come up with an provably good ap-
proximation algorithm for the NP-Hard problem.
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