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Outline

• SET-COVER

• MAX-SAT
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SET-COVER

• Given a universe of elements U = {1, . . .m}, and a family of

subsets of U called S
• For every S ∈ S, there is a weight wS

• Goal: Find a cover C ⊆ S of minimum weight
!

S∈C wS.

• A set C is a cover, if for all i ∈ U , there is a set S ∈ C such

that i ∈ S.
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SET-COVER

• SET-COVER is NP-HARD (to show, reduce from VERTEX-

COVER)

• Want to solve this problem frequently in e.g. computational

biology

• There is an interesting approximation algorithm for it though

• IDEA: Solve an LP; Use the setting in the solution to assign

probabilities to indicator rv’s; Round these rv’s
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The Integer Program (IP)

Minimize:
!

S∈SwSxS

Subject to:

!
S:i∈S xS ≥ 1, ∀i ∈ U

xS ∈ {0,1}, ∀S ∈ S
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The Linear Program (LP)

Minimize:
!

S∈SwSxS

Subject to:

!
S:i∈S xS ≥ 1, ∀i ∈ U

0 ≤ xS ≤ 1, ∀S ∈ S
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Analysis

• IDEA: Solve this LP in polynomial time

• PROBLEM: It gives us xS ∈ [0,1] for all S. How do we decide

whether to choose each set?

• IDEA: Choose set S with probability xS
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Example

• U = {a, b, c}
• S1 = {a, b}; S2 = {a, c}; S3 = {b, c}
• wS = 1 for all sets S
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Example

• U = {a, b, c}
• S1 = {a, b}; S2 = {a, c}; S3 = {b, c}
• wS = 1 for all sets S

• LP Solution: x∗1 = x∗2 = x∗3 = 1/2

• Let R be the sets in the rounding

• Example Rounding: R = {S1, S2}
• Success! This gives a cover with optimal weight
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Fact 1: Expected weight of R is no

more than expected weight of OPT.

• Proof: For each possible set S, let XS be an indicator r.v.

that is 1 iff S ∈ R. Then we have
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• The last term is the weight of the LP solution which is at

most the weight of the optimal solution.
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Fact 2: Every element i ∈ U is covered

by R with probability at least 1− 1/e

• Proof: Fix an element i ∈ U . Let T be the sets in S that

contain i. Then

Pr(i is not covered by R) =
'

S∈T
Pr(S /∈ R)

=
'

S∈T
(1− x∗S)

≤
'

S∈T
e−x∗S

= e−
!

S∈T x∗S

≤ e−1.
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Problem: May not always get a cover

• Problem: Each item covered with probability 1 − 1/e, but

likely that some item not covered.

• Idea: Round multiple times to get a cover with high proba-

bility.

• Increases the weight, but only by a logarithmic amount
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Algorithm 1

1. Let x∗ be a solution to the relaxed LP

2. For t = 1 to 2 lnm do

(a) Add each set S to Rt with probability x∗S independently

3. Return
(
tRt
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Analysis

Theorem 1: In one run with probability 1/4, Algorithm 1 (1)
returns a cover, (2) with total weight at most 4 lnm ·OPT .

Proof: (1) For a fixed i, By Fact 1 and independence, we have

Pr(i not covered) ≤ e−2 lnm = m−2

Thus, by a union bound:

Pr(any of the m elements uncovered) ≤ m−1 ≤
1

4
.

(2) By Fact 2, expected weight of sets added in one iteration of
the for loop is at most OPT. By linearity, expected weight over
2 lnm iterations is at most 2 lnm · OPT . Let W be the weight
of the sets returned by the algorithm. By Markov’s inequality,
Pr(W ≥ 2E(W )) ≤ 1/2.

By a final union bound, with probability at least 1/4 we have a
cover with the weight at most 4 lnm ·OPT .
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CONCLUSION

• Algorithm 1 returns a valid set cover with weight at most

4 lnm times the optimal weight set-cover with probability of

failure at most 1/4. Thus, after running it at most 4 times

in expectation, we’d expect to have a cover that has total

weight at most 4 lnm ·OPT .

• It critically relies on a solution to the LP to guide the ran-

domized part of the algorithm.

• Next, we’ll see another example of this approach for the

MAX-SAT problem
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MAX-k-SAT

• Imagine that we have some CNF boolean function, where

each clause has exactly k literals for some integer k.

• Each clause Cj has a set of positive variables Pj and a set of

negative variables Nj

• Our goal is to set truth values to the variables in order to

maximize the number of satisfied clauses

• IDEA: Solve an LP; Use the settings in this solution to assign

probabilities to indicator r.v.’s; Round these r.v.’s.
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The Linear Program (LP)

Maximize:
!

j zj

Subject to:

zj ≤
!

i∈Pj
yi +

!
i∈Nj

(1− yi), ∀Cj

0 ≤ yi ≤ 1, ∀yi

0 ≤ zj ≤ 1, ∀zj
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The Algorithm

• Write an LP for the boolean formula as in the previous slide

• Let y∗i be the settings found in the solution found for the LP

• For each variable i, set i to TRUE with probability y∗i and

FALSE otherwise
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Analysis Background

• Convex/Concave Functions

• Arithmetic/Geometric Mean inequality
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Convex Functions

• A function, f , is convex if for all inputs x and y and for all

λ ∈ [0,1]:

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

• Key fact: If f has a second derivative, then f is convex iff

the second derivative is always non-negative.
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Concave Functions

• A concave function is the negative of a convex function

• A function, f , is concave if for all inputs x and y and for all

λ ∈ [0,1]:

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

• Key fact: If f has a second derivative, then f is concave iff

the second derivative is always negative.
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GM ≤ AM

• For any non-negative x1, x2, . . . , xk, the geometric mean is at

most equal to the arithmetic mean

• (x1x2 . . . xk)
1/k ≤ (1/k)(x1 + x2 + . . .+ xk)

• Easy to see this for 2 variables:
√
xy ≤ (1/2)(x+ y)
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Probability Cj is not satisfied

• Fix some clause Cj and let Pj be the set of positive and Nj

be the set of negative variables in Cj

• Then the probability that the clause is not satisfied is
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First inequality holds since GM ≤ AM.
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Using Concavity

• Probability that Cj is satisfied is: 1−
-
1−

z∗j
k

.k

• f(z∗j ) = 1−
-
1−

z∗j
k

.k
is concave over z∗j ∈ [0,1]

• Hence: For any x and y and all λ ∈ [0,1]:

f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y)

• Specifically if x = 0 and y = 1, then

f(1− λ) ≥ (1− λ)f(1)

• Setting 1− λ to be z∗j , we get that

f(z∗j ) ≥ z∗j

+

1−
-
1−

1

k

.k
,
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Bounding with Concave Property

f(z⇤j ) = 1�
✓
1�

z⇤j
k

◆k
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Using Linearity of Expectation

• Probability that Cj is satisfied is ≥ z∗j

-
1−

/
1− 1

k

0k.

• Let W be the number of clauses satisfied by our algorithm,

and let Wj be an indicator r.v. that is 1 iff Cj is satisfied.
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OPT

≥ (1− 1/e)OPT

≥ .632 ·OPT
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Step 5 of Last Slide

• For step 5 of last slide, note that since 1− x ≤ e−x:

(1− 1/k)k ≤ e−1

• So for any value of k,

1− (1− 1/k)k ≥ 1− 1/e

• Just FYI, it’s also true that

lim
k→∞

(1− 1/k)k = e−1

Since

lim
k→∞

(1 + 1/k)k = e
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Take Away

• Many real-world problems can be shown to not have an effi-

cient solution unless P = NP (these are the NP-Hard prob-

lems)

• However, if a problem is shown to be NP-Hard, all hope is

not lost!

• In many cases, we can come up with an provably good ap-

proximation algorithm for the NP-Hard problem.

27


