
CS 561, Pre Lecture 1

Jared Saia

University of New Mexico



Today’s Outline

• Background

• Asymptotic Analysis

1



Why study algorithms?

“Seven years of College down the toilet” - John Belushi in Animal

House

• Q: Can I get a programming job without knowing something

about algorithms and data structures?

• A: Yes, but do you really want to be programming GUIs your

entire life?

2



Why study algorithms? (II)

• Almost all big companies want programmers with knowledge

of algorithms: Google, Facebook, Amazon, Oracle, Yahoo,

Sandia, Los Alamos, etc.

• In most programming job interviews, they will ask you several

questions about algorithms and/or data structures

• Your knowledge of algorithms will set you apart from the

large masses of interviewees who know only how to program

• If you want to start your own company, you should know that

many startups are successful because they’ve found better

algorithms for solving a problem (e.g. Google, Akamai, etc.)

3



Why Study Algorithms? (III)

• You’ll improve your research skills in almost any area

• You’ll write better, faster code

• You’ll learn to think more abstractly and mathematically

• It’s one of the most challenging and interesting area of CS!

4



A Real Job Interview Question

The following is a real job interview question (thanks to Maksim

Noy):

• You are given an array with integers between 1 and 1,000,000.

• All integers between 1 and 1,000,000 are in the array at least

once, and one of those integers is in the array twice

• Q: Can you determine which integer is in the array twice?

Can you do it while iterating through the array only once?

5



Solution

• Ideas on how to solve this problem?? What if we allowed

multiple iterations?

6



Naive Algorithm

• Create a new array of ints between 1 and 1,000,000, which

we’ll use to count the occurences of each number. Initialize

all entries to 0

• Go through the input array and each time a number is seen,

update its count in the new array

• Go through the count array and see which number occurs

twice.

• Return this number

7



Naive Algorithm Analysis

• Q: How long will this algorithm take?

• A: We iterate through the numbers 1 to 1,000,000 three

times!

• Note that we also use up a lot of space with the extra array

• This is wasteful of time and space, particularly as the input

array gets very large (e.g. it might be a huge data stream)

• Q: Can we do better?

8



Ideas for a better Algorithm

• Note that
!n

i=1 i = (n+1)n/2

• Let S be the sum of the input array

• Let x be the value of the repeated number

• Then S = (1,000,000+ 1)1,000,000/2+ x

• Thus x = S − (1,000,000+ 1)1,000,000/2

9



A better Algorithm

• Iterate through the input array, summing up all the numbers,

let S be this sum

• Let x = S − (1,000,000+ 1)1,000,000/2

• Return x

10



Analysis

• This algorithm takes iterates through the input array just

once

• It uses up essentially no extra space

• It is at least three times faster than the naive algorithm

• Further, if the input array is so large that it won’t fit in

memory, this is the only algorithm which will work!

• These time and space bounds are the best possible

11



Take Away

• Designing good algorithms matters!

• Not always this easy to improve an algorithm

• However, with some thought and work, you can almost al-

ways get a better algorithm than the naive approach

12



How to analyze an algorithm?

• There are several resource bounds we could be concerned

about: time, space, communication bandwidth, logic gates,

etc.

• However, we are usually most concerned about time

• Recall that algorithms are independent of programming lan-

guages and machine types

• Q: So how do we measure resource bounds of algorithms

13



Random-access machine model

• We will use RAM model of computation in this class

• All instructions operate in serial

• All basic operations (e.g. add, multiply, compare, read, store,

etc.) take unit time

• All “atomic” data (chars, ints, doubles, pointers, etc.) take

unit space

14



Worst Case Analysis

• We’ll generally be pessimistic when we evaluate resource

bounds

• We’ll evaluate the run time of the algorithm on the worst

possible input sequence

• Amazingly, in most cases, we’ll still be able to get pretty

good bounds

• Justification: The “average case” is often about as bad as

the worst case.

15



Example Analysis

• Consider the problem discussed last tuesday about finding a

redundant element in an array

• Let’s consider the more general problem, where the numbers

are 1 to n instead of 1 to 1,000,000

16



Algorithm 1

• Create a new “count” array of ints of size n, which we’ll use

to count the occurences of each number. Initialize all entries

to 0

• Go through the input array and each time a number is seen,

update its count in the “count” array

• As soon as a number is seen in the input array which has

already been counted once, return this number

17



Algorithm 2

• Iterate through the input array, summing up all the numbers,

let S be this sum

• Let x = S − (n+1)n/2

• Return x

18



Example Analysis: Time

• Worst case: Algorithm 1 does 5 ∗ n operations (n inits to 0

in “count” array, n reads of input array, n reads of “count”

array (to see if value is 1), n increments, and n stores into

count array)

• Worst case: Algorithm 2 does 2 ∗ n+ 4 operations (n reads

of input array, n additions to value S, 4 computations to

determine x given S)

19



Example Analysis: Space

• Worst Case: Algorithm 1 uses n additional units of space to

store the “count” array

• Worst Case: Algorithm 2 uses 2 additional units of space

20



A Simpler Analysis

• Analysis above can be tedious for more complicated algo-

rithms

• In many cases, we don’t care about constants. 5n is about

the same as 2n + 4 which is about the same as an + b for

any constants a and b

• However we do still care about the difference in space: n is

very different from 2

• Asymptotic analysis is the solution to removing the tedium

but ensuring good analysis

21



Asymptotic analysis?

• A tool for analyzing time and space usage of algorithms

• Assumes input size is a variable, say n, and gives time and

space bounds as a function of n

• Ignores multiplicative and additive constants

• Concerned only with the rate of growth

• E.g. Treats run times of n, 10,000 ∗ n + 2000, and .5n + 2

all the same (We use the term O(n) to refer to all of them)

22



What is Asymptotic Analysis?(II)

• Informally, O notation is the leading (i.e. quickest growing)

term of a formula with the coefficient stripped off

• O is sort of a relaxed version of “≤”

• E.g. n is O(n) and n is also O(n2)

• By convention, we use the smallest possible O value i.e. we

say n is O(n) rather than n is O(n2)

23



More Examples

• E.g. n, 10,000n− 2000, and .5n+2 are all O(n)

• n+ logn, n−
√
n are O(n)

• n2 + n+ logn, 10n2 + n−
√
n are O(n2)

• n logn+10n is O(n logn)

• 10 ∗ log2 n is O(log2 n)

• n
√
n+ n logn+10n is O(n

√
n)

• 10,000, 250 and 4 are O(1)

24



More Examples

• Algorithm 1 and 2 both take time O(n)

• Algorithm 1 uses O(n) extra space

• But, Algorithm 2 uses O(1) extra space

25



Formal Defn of Big-O

• A function f(n) is O(g(n)) if there exist positive constants c

and n0 such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0

26



Example

• Let’s show that f(n) = 10n+100 is O(g(n)) where g(n) = n

• We need to give constants c and n0 such that 0 ≤ f(n) ≤
cg(n) for all n ≥ n0

• In other words, we need constants c and n0 such that 10n+

100 ≤ cn for all n ≥ n0

27



Example

• We can solve for appropriate constants:

10n+100 ≤ cn (1)

10 + 100/n ≤ c (2)

• So if n > 1, then c should be greater than 110.

• In other words, for all n > 1, 10n+100 ≤ 110n

• So 10n+100 is O(n)

28



Questions

Express the following in O notation

• n3/1000− 100n2 − 100n+3

• logn+100

• 10 ∗ log2 n+100

• !n
i=1 i

29



Relatives of big-O

The following are relatives of big-O:

O “≤”
Θ “=”
Ω “≥”
o “<”
ω “>”

30



Formal Defns

• O(g(n)) = {f(n) : there exist positive constants c and n0
such that 0 ≤ f(n) ≤ cg(n) for all n ≥ n0}

• Θ(g(n)) = {f(n) : there exist positive constants c1, c2, and n0
such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0}

• Ω(g(n)) = {f(n) : there exist positive constants c and n0
such that 0 ≤ cg(n) ≤ f(n) for all n ≥ n0}

31



Formal Defns (II)

• o(g(n)) = {f(n) : for any positive constant c > 0 there exists

n0 > 0 such that 0 ≤ f(n) < cg(n) for all n ≥ n0}

• ω(g(n)) = {f(n) : for any positive constant c > 0 there exists

n0 > 0 such that 0 ≤ cg(n) < f(n) for all n ≥ n0}

32



Relatives of big-O

When would you use each of these? Examples:

O “≤” This algorithm is O(n2) (i.e. worst case is Θ(n2))
Θ “=” This algorithm is Θ(n) (best and worst case are Θ(n))
Ω “≥” Any comparison-based algorithm for sorting is Ω(n logn)
o “<” Can you write an algorithm for sorting that is o(n2)?
ω “>” This algorithm is not linear, it can take time ω(n)

33



Rule of Thumb

• Let f(n), g(n) be two functions of n

• Let f1(n), be the fastest growing term of f(n), stripped of

its coefficient.

• Let g1(n), be the fastest growing term of g(n), stripped of

its coefficient.

Then we can say:

• If f1(n) ≤ g1(n) then f(n) = O(g(n))

• If f1(n) ≥ g1(n) then f(n) = Ω(g(n))

• If f1(n) = g1(n) then f(n) = Θ(g(n))

• If f1(n) < g1(n) then f(n) = o(g(n))

• If f1(n) > g1(n) then f(n) = ω(g(n))

34



More Examples

The following are all true statements:

• !n
i=1 i

2 is O(n3), Ω(n3) and Θ(n3)

• logn is o(
√
n)

• logn is o(log2 n)

• 10,000n2 +25n is Θ(n2)

35



Problems

True or False? (Justify your answer)

• n3 +4 is ω(n2)

• n logn3 is Θ(n logn)

• log3 5n2 is Θ(logn)

• 10−10n2 + n is Θ(n)

• n logn is Ω(n)

• n3 +4 is o(n4)

36



Another Example

• Let f(n) = 10 log2 n + logn, g(n) = log2 n. Let’s show that

f(n) = Θ(g(n)).

• We want positive constants c1, c2 and n0
such that 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n) for all n ≥ n0

0 ≤ c1 log
2 n ≤ 10 log2 n+ logn ≤ c2 log

2 n

Dividing by log2 n, we get:

0 ≤ c1 ≤ 10+ 1/ logn ≤ c2

• If we choose c1 = 1, c2 = 11 and n0 = 2, then the above

inequality will hold for all n ≥ n0

37



At-Home Exercise

Show that for f(n) = n+ 100 and g(n) = (1/2)n2, that f(n) ∕=
Θ(g(n))

• What statement would be true if f(n) = Θ(g(n)) ?

• Show that this statement can not be true.

38


