CS 561, Randomized Data Structures: Hash Tables, Skip Lists, Bloom Filters, Count-Min sketch

Jared Saia
University of New Mexico
Outline

• Skip Lists
• Bloom Filters
• Count-Min Sketch
A dictionary ADT implements the following operations

- $\text{Insert}(x)$: puts the item x into the dictionary
- $\text{Delete}(x)$: deletes the item x from the dictionary
- $\text{IsIn}(x)$: returns true iff the item x is in the dictionary
Skip List

- Enables insertions and searches for ordered keys in $O(\log n)$ expected time
- Very elegant randomized data structure, simple to code but analysis is subtle
- They guarantee that, with high probability, all the major operations take $O(\log n)$ time (e.g. Find-Max, Predecessor/Successor)
- Can even enable ”find-i-th value” if store with each edge the number of elements that edge skips
• A skip list is basically a collection of doubly-linked lists, L_1, L_2, \ldots, L_x, for some integer x
• Each list has a special head and tail node, the keys of these nodes are assumed to be $-\text{MAXNUM}$ and $+\text{MAXNUM}$ respectively
• The keys in each list are in sorted order (non-decreasing)
Skip List

• Every node is stored in the bottom list
• For each node in the bottom list, we flip a coin over and over until we get tails. For each heads, we make a duplicate of the node.
• The duplicates are stacked up in levels and the nodes on each level are strung together in sorted linked lists
• Each node \(v \) stores a search key (\(\text{key}(v) \)), a pointer to its next lower copy (\(\text{down}(v) \)), and a pointer to the next node in its level (\(\text{right}(v) \)).
Example
Search

- To do a search for a key, x, we start at the leftmost node L in the highest level.
- We then scan through each level as far as we can without passing the target value x and then proceed down to the next level.
- The search ends either when we find the key x or fail to find x on the lowest level.
Search

SkipListFind(x, L){
 v = L;
 while (v != NULL) and (Key(v) != x){
 if (Key(Right(v)) > x)
 v = Down(v);
 else
 v = Right(v);
 }
 return v;
}
Search Example
coin() returns "heads" with probability $1/2$

Insert(k)
First call Search(k), let pLeft be the leftmost elem $\leq k$ in L_1
Insert k in List 0, to the right of pLeft
i = 1;
while (coin() = "heads"){
 insert k in List i;
i++;
}

Deletion

- Deletion is very simple
- First do a search for the key to be deleted
- Then delete that key from all the lists it appears in from the bottom up, making sure to “zip up” the lists after the deletion
Analysis

- Intuitively, each level of the skip list has about half the number of nodes of the previous level, so we expect the total number of levels to be about $O(\log n)$
- Similarly, each time we add another level, we cut the search time in half except for a constant overhead
- So after $O(\log n)$ levels, we would expect a search time of $O(\log n)$
- We will now formalize these two intuitive observations
Height of Skip List

- For some key, k, let X_k be the maximum height of k in the skip list.
- Q: What is the probability that $X_k \geq 2 \log n$?
- A: If $p = 1/2$, we have:

\[
P(X_k \geq 2 \log n) = \left(\frac{1}{2}\right)^{2 \log n} = \frac{1}{(2^{\log n})^2} = \frac{1}{n^2}
\]

- Thus the probability that a particular key k achieves height $2 \log n$ is $\frac{1}{n^2}$
New Tool: Union Bound

Given two events E_1 and E_2,

$$ Pr(E_1 \cup E_2) \leq Pr(E_1) + Pr(E_2) $$

Proof:

$$ Pr(E_1 \cup E_2) = Pr(E_1) + Pr(E_2) - Pr(E_1 \cap E_2) $$

$$ \leq Pr(E_1) + Pr(E_2) $$

Generalizing to n events, we have that:

$$ Pr(\bigcup_{i=1}^{n} E_i) \leq \sum_{i=1}^{n} Pr(E_i) $$
Height of Skip List

• Q: What is the probability that any key achieves height 2 log n?
• A: We want

\[P(X_1 \geq 2 \log n \text{ or } X_2 \geq 2 \log n \text{ or } \ldots \text{ or } X_n \geq 2 \log n) \]

• By a Union Bound, this probability is no more than

\[P(X_1 \geq 2 \log n) + P(X_2 \geq 2 \log n) + \cdots + P(X_n \geq 2 \log n) \]

• Which equals:

\[\sum_{i=1}^{n} \frac{1}{n^2} = \frac{n}{n^2} = \frac{1}{n} \]
Height of Skip List

- This probability gets small as n gets large
- In particular, the probability of having a skip list of height exceeding $2 \log n$ is $o(1)$
- If an event occurs with probability $1 - o(1)$, we say that it occurs with high probability
- Key Point: The height of a skip list is $O(\log n)$ with high probability.
In-Class Exercise Trick

A trick for computing expectations of discrete positive random variables:

- Let X be a discrete r.v., that takes on values from 1 to n

$$E(X) = \sum_{i=1}^{n} P(X \geq i)$$
Why?

\[
\sum_{i=1}^{n} P(X \geq i) = P(X = 1) + P(X = 2) + P(X = 3) + \ldots + P(X = 2) + P(X = 3) + P(X = 4) + \ldots + P(X = 3) + P(X = 4) + P(X = 5) + \ldots + \ldots = 1Pr(X = 1) + 2Pr(X = 2) + 3Pr(X = 3) + \ldots = E(X)
\]
In-Class Exercise

Q: How much memory do we expect a skip list to use up?

- Let X_k be the number of lists that key k is inserted in.
- Q: What is $P(X_k \geq 1)$, $P(X_k \geq 2)$, $P(X_k \geq 3)$?
- Q: What is $P(X_k \geq i)$ for $i \geq 1$?
- Q: What is $E(X_k)$?
- Q: Let $X = \sum_{k=1}^{n} X_k$. What is $E(X)$?
Search Time

- It's easier to analyze the search time if we imagine running the search backwards.
- Imagine that we start at the found node v in the bottommost list and we trace the path backwards to the top leftmost sentinel, L.
- This will give us the length of the search path from L to v which is the time required to do the search.
Backwards Search

SLFback(v) {
 while (v != L) {
 if (Up(v) != NIL) {
 v = Up(v);
 } else {
 v = Left(v);
 }
 }
}
Backward Search

- For every node \(v \) in the skip list \(\text{Up}(v) \) exists with probability \(1/2 \). So for purposes of analysis, SLFBack is the same as the following algorithm:

```
FlipWalk(v){
    while (v != L){
        if (COINFLIP == HEADS) v = Up(v);
        else v = Left(v);
    }
}
```
Analysis

• For this algorithm, the expected number of heads is exactly the same as the expected number of tails
• Thus the expected run time of the algorithm is twice the expected number of upward jumps
• Since we already know that the number of upward jumps is $O(\log n)$ with high probability, we can conclude that the expected search time is $O(\log n)$
Bloom Filters

- Randomized data structure for representing a set. Implements:
 - Insert(x):
 - IsMember(x):
- Allow false positives but require very little space
- Used frequently in: Databases, networking problems, p2p networks, packet routing
Bloom Filters

- Have \(m \) slots, \(k \) hash functions, \(n \) elements; assume hash functions are all independent
- Each slot stores 1 bit, initially all bits are 0
- Insert\((x) \) : Set the bit in slots \(h_1(x), h_2(x), \ldots, h_k(x) \) to 1
- IsMember\((x) \) : Return yes iff the bits in \(h_1(x), h_2(x), \ldots, h_k(x) \) are all 1
Analysis Sketch

- m slots, k hash functions, n elements; assume hash functions are all independent
- Then $P(\text{fixed slot is still 0}) = (1 - 1/m)^{kn}$
- Useful fact from Taylor expansion of e^{-x}:
 \[e^{-x} - x^2/2 \leq 1 - x \leq e^{-x} \text{ for } x < 1 \]
- Then if $x \leq 1$
 \[e^{-x}(1 - x^2) \leq 1 - x \leq e^{-x} \]
• Thus we have the following to good approximation.

\[Pr(\text{fixed slot is still 0}) = (1 - 1/m)^{kn} \approx e^{-kn/m} \]

• Let \(p = e^{-kn/m} \) and let \(\rho \) be the fraction of 0 bits after \(n \) elements inserted then

\[Pr(\text{false positive}) = (1 - \rho)^k \approx (1 - p)^k \]

• Where this last approximation holds because \(\rho \) is very close to \(p \) (by a Martingale argument beyond the scope of this class)
Analysis

- Want to minimize $(1 - p)^k$, which is equivalent to minimizing $g(p) = k \ln(1 - p)$
- Trick: Note that $g(p) = -(m/n) \ln(p) \ln(1 - p)$
- By symmetry, this is minimized when $p = 1/2$ or equivalently $k = (m/n) \ln 2$
- False positive rate is then $(1/2)^k \approx (.6185)^{m/n}$
Tricks

- Can get the union of two sets by just taking the bitwise-or of the bit-vectors for the corresponding Bloom filters
- Can easily half the size of a bloom filter - assume size is power of 2 then just bitwise-or the first and second halves together
- Can approximate the size of the intersection of two sets - inner product of the bit vectors associated with the Bloom filters is a good approximation to this.
Extensions

- Bloomier Filters: Also allow for data to be inserted in the filter - similar functionality to hash tables but less space, and the possibility of false positives.
Data Streams

- A router forwards packets through a network
- A natural question for an administrator to ask is: what is the list of substrings of a fixed length that have passed through the router more than a predetermined threshold number of times
- This would be a natural way to try to, for example, identify worms and spam
- Problem: the number of packets passing through the router is *much* too high to be able to store counts for every substring that is seen!
Data Streams

- This problem motivates the data stream model
- Informally: there is a stream of data given as input to the algorithm
- The algorithm can take at most one pass over this data and must process it sequentially
- The memory available to the algorithm is much less than the size of the stream
- In general, we won’t be able to solve problems exactly in this model, only approximate
Our Problem

- We are presented with a stream of items i
- We want to get a good approximation to the value $\text{Count}(i, T)$, which is the number of times we have seen item i up to time T
• Our solution will be to use a data structure called a *Count-Min Sketch*
• This is a randomized data structure that will keep approximate values of Count(i,T)
• It is implemented using k hash functions and m counters
Count-Min Sketch

- Think of our m counters as being in a 2-dimensional array, with m/k counters per row and k rows
- Let $C_{a,b}$ be the counter in row a and column b
- Our hash functions map items from the universe into counters
- In particular, hash function h_a maps item i to counter $C_{a,h_a(i)}$
Updates

- Initially all counters are set to 0
- When we see item i in the data stream we do the following
- For each $1 \leq a \leq k$, increment $C_{a,h_a(i)}$
Count Approximations

- Let $C_{a,b}(T)$ be the value of the counter $C_{a,b}$ after processing T tuples
- We approximate Count(i, T) by returning the value of the smallest counter associated with i
- Let $m(i, T)$ be this value
Analysis

Theorem: For any $\epsilon > 0$, we can design a Count-Min sketch such that the following hold:

- For every item i, $m(i, T) \geq \text{Count}(i, T)$
- With probability at least $1 - e^{-m\epsilon/e}$, for every item i:
 $$m(i, T) \leq \text{Count}(i, T) + \epsilon T$$
Proof

- Easy to see that $m(i, T) \geq \text{Count}(i, T)$, since each counter $C_{a,h}(i)$ incremented by c_t every time pair (i, c_t) is seen.
- Hard Part: Showing $m(i, T) \leq \text{Count}(i, T) + \epsilon T$.
- To see this, we will first consider the specific counter $C_{1,h(i)}$ and then use symmetry.
Proof

- Let Z_1 be a random variable giving the amount the counter is incremented by items other than i
- Let X_t be an indicator r.v. that is 1 if j is the t-th item, and $j \neq i$ and $h_1(i) = h_1(j)$
- Then $Z_1 = \sum_{t=1}^{T} X_t$
- But if the hash functions are “good”, then if $i \neq j$, $Pr(h_1(i) = h_1(j)) = k/m$ (specifically, we need the hash functions to come from a 2-universal family, but we won’t get into that in this class)
- Hence, $E(X_t) = k/m$
Proof

• Thus, by linearity of expectation, we have that:

\[E(Z_1) \leq \sum_{t=1}^{T} \left(\frac{k}{m} \right) \]

\[= \frac{Tk}{m} \] \hspace{1cm} (2)

• We now need to make use of a very important inequality: Markov’s inequality
Markov’s Inequality

- Let X be a random variable that only takes on non-negative values
- Then for any $\lambda > 0$:
 \[
 Pr(X \geq \lambda) \leq \frac{E(X)}{\lambda}
 \]
- Proof of Markov’s: Assume instead that there exists a λ such that $Pr(X \geq \lambda)$ was actually larger than $E(X)/\lambda$
- But then the expected value of X would be at least $\lambda Pr(X \geq \lambda) > E(X)$, which is a contradiction!!!
Proof

- Now, by Markov’s inequality,

\[Pr(Z_1 \geq \epsilon T) \leq \frac{T k/m}{\epsilon T} = \frac{k}{m \epsilon} \]

- This is the event where \(Z_1 \) is “bad” for item \(i \).
• Now again assume our k hash functions are “good” in the sense that they are independent.
• Then we have that

$$\prod_{i=1}^{k} \Pr(Z_j \geq \epsilon T) \leq \left(\frac{k}{m\epsilon} \right)^k$$
Proof

• Finally, we want to choose a k that minimizes $f(k) = \left(\frac{k}{m\epsilon}\right)^k$

• Note that $\frac{\partial f}{\partial k} = \left(\frac{k}{m\epsilon}\right)^k \left(\ln \frac{k}{m\epsilon} + 1\right)$

• From this, we can see that the probability is minimized when $k = m\epsilon/e$, in which case:

$$\left(\frac{k}{m\epsilon}\right)^k = e^{-m\epsilon/e}$$
Recap

- Our Count-Min Sketch is very good at giving estimating counts of items with very little external space.
- Tradeoff is that it only provides approximate counts, but we can bound the approximation!
- Note: Can use the Count-Min Sketch to keep track of all the items in the stream that occur more than a given threshold (“heavy hitters”)
- Basic idea is to store an item in a list of “heavy hitters” if its count estimate ever exceeds some given threshold.