CS 561, Randomized Data Structures:
Hash Tables, Skip Lists, Bloom Filters,
Count-Min sketch

Jared Saia
University of New Mexico
Outline

• Skip Lists
• Bloom Filters
• Count-Min Sketch
A dictionary ADT implements the following operations

- \textit{Insert}(x): puts the item \(x \) into the dictionary
- \textit{Delete}(x): deletes the item \(x \) from the dictionary
- \textit{IsIn}(x): returns true iff the item \(x \) is in the dictionary
• Enables insertions and searches for ordered keys in $O(\log n)$ expected time
• Very elegant randomized data structure, simple to code but analysis is subtle
• They guarantee that, with high probability, all the major operations take $O(\log n)$ time (e.g. Find-Max, Predecessor/Successor)
• Can even enable ”find-i-th value” if store with each edge the number of elements that edge skips
Skip List

- A skip list is basically a collection of doubly-linked lists, L_1, L_2, \ldots, L_x, for some integer x
- Each list has a special head and tail node, the keys of these nodes are assumed to be $-\text{MAXNUM}$ and $+\text{MAXNUM}$ respectively
- The keys in each list are in sorted order (non-decreasing)
Skip List

- Every node is stored in the bottom list.
- For each node in the bottom list, we flip a coin over and over until we get tails. For each heads, we make a duplicate of the node.
- The duplicates are stacked up in levels and the nodes on each level are strung together in sorted linked lists.
- Each node v stores a search key (key(v)), a pointer to its next lower copy (down(v)), and a pointer to the next node in its level (right(v)).
Example
Search

• To do a search for a key, x, we start at the leftmost node L in the highest level
• We then scan through each level as far as we can without passing the target value x and then proceed down to the next level
• The search ends either when we find the key x or fail to find x on the lowest level
Search

SkipListFind(x, L){
 v = L;
 while (v != NULL) and (Key(v) != x){
 if (Key(Right(v)) > x)
 v = Down(v);
 else
 v = Right(v);
 }
 return v;
}
Search Example
coin() returns "heads" with probability 1/2

Insert(k)
First call Search(k), let pLeft be the leftmost elem <= k in L_1
Insert k in List 0, to the right of pLeft
i = 1;
while (coin() = "heads"){
 insert k in List i;
 i++;
}
Deletion

- Deletion is very simple
- First do a search for the key to be deleted
- Then delete that key from all the lists it appears in from the bottom up, making sure to “zip up” the lists after the deletion
Analysis

- Intuitively, each level of the skip list has about half the number of nodes of the previous level, so we expect the total number of levels to be about $O(\log n)$.
- Similarly, each time we add another level, we cut the search time in half except for a constant overhead.
- So after $O(\log n)$ levels, we would expect a search time of $O(\log n)$.
- We will now formalize these two intuitive observations.
Height of Skip List

- For some key, k, let X_k be the maximum height of k in the skip list.
- Q: What is the probability that $X_k \geq 2 \log n$?
- A: If $p = 1/2$, we have:

$$P(X_k \geq 2 \log n) = \left(\frac{1}{2}\right)^{2\log n} = \frac{1}{(2\log n)^2} = \frac{1}{n^2}$$

- Thus the probability that a particular key k achieves height $2 \log n$ is $\frac{1}{n^2}$.
• Q: What is the probability that any key achieves height 2 log n?
• A: We want

$$P(X_1 \geq 2\log n \text{ or } X_2 \geq 2\log n \text{ or } \ldots \text{ or } X_n \geq 2\log n)$$

• By a Union Bound, this probability is no more than

$$P(X_1 \geq 2\log n) + P(X_2 \geq 2\log n) + \cdots + P(X_n \geq 2\log n)$$

• Which equals:

$$\sum_{i=1}^{n} \frac{1}{n^2} = \frac{n}{n^2} = 1/n$$
Height of Skip List

- This probability gets small as n gets large
- In particular, the probability of having a skip list of height exceeding $2 \log n$ is $o(1)$
- If an event occurs with probability $1 - o(1)$, we say that it occurs with high probability
- Key Point: The height of a skip list is $O(\log n)$ with high probability.
In-Class Exercise Trick

A trick for computing expectations of discrete positive random variables:

- Let X be a discrete r.v., that takes on values from 1 to n

$$E(X) = \sum_{i=1}^{n} P(X \geq i)$$
Why?

\[
\sum_{i=1}^{n} P(X \geq i) = P(X = 1) + P(X = 2) + P(X = 3) + \ldots \\
+ P(X = 2) + P(X = 3) + P(X = 4) + \ldots \\
+ P(X = 3) + P(X = 4) + P(X = 5) + \ldots \\
+ \ldots \\
= 1P \text{r}(X = 1) + 2P \text{r}(X = 2) + 3P \text{r}(X = 3) + \ldots \\
= E(X)
\]
In-Class Exercise

Q: How much memory do we expect a skip list to use up?

• Let X_k be the number of lists that key k is inserted in.
• Q: What is $P(X_k \geq 1)$, $P(X_k \geq 2)$, $P(X_k \geq 3)$?
• Q: What is $P(X_k \geq i)$ for $i \geq 1$?
• Q: What is $E(X_k)$?
• Q: Let $X = \sum_{k=1}^{n} X_k$. What is $E(X)$?
Search Time

- It's easier to analyze the search time if we imagine running the search backwards.
- Imagine that we start at the found node v in the bottommost list and we trace the path backwards to the top leftmost sentinel, L.
- This will give us the length of the search path from L to v which is the time required to do the search.
Backwards Search

\[
\text{SLFback}(v)\left\{ \begin{array}{l}
\text{while } (v \neq L)\{ \\
\text{if } (Up(v) \neq \text{NIL}) \\
\quad v = Up(v) \\
\text{else} \\
\quad v = Left(v) \\
\} \\
\end{array} \right.
\]
Backward Search

- For every node \(v \) in the skip list \(\text{Up}(v) \) exists with probability 1/2. So for purposes of analysis, SLFBack is the same as the following algorithm:

```c
FlipWalk(v){
    while (v != L){
        if (COINFLIP == HEADS)
            v = Up(v);
        else
            v = Left(v);
    }
}
```
Analysis

- For this algorithm, the expected number of heads is exactly the same as the expected number of tails
- Thus the expected run time of the algorithm is twice the expected number of upward jumps
- Since we already know that the number of upward jumps is \(O(\log n) \) with high probability, we can conclude that the expected search time is \(O(\log n) \)
Bloom Filters

- Randomized data structure for representing a set. Implements:
 - Insert(x)
 - IsMember(x)
- Allow false positives but require very little space
- Used frequently in: Databases, networking problems, p2p networks, packet routing
Bloom Filters

- Have \(m \) slots, \(k \) hash functions, \(n \) elements; assume hash functions are all independent
- Each slot stores 1 bit, initially all bits are 0
- Insert\((x) \): Set the bit in slots \(h_1(x), h_2(x), \ldots, h_k(x) \) to 1
- IsMember\((x) \): Return yes iff the bits in \(h_1(x), h_2(x), \ldots, h_k(x) \) are all 1
Analysis Sketch

- m slots, k hash functions, n elements; assume hash functions are all independent
- Then $P(\text{fixed slot is still 0}) = (1 - 1/m)^{kn}$
- Useful fact from Taylor expansion of e^{-x}:

 $$e^{-x} - x^2/2 \leq 1 - x \leq e^{-x} \text{ for } x < 1$$

- Then if $x \leq 1$

 $$e^{-x}(1 - x^2) \leq 1 - x \leq e^{-x}$$
Analysis

• Thus we have the following to good approximation.

\[Pr(\text{fixed slot is still 0}) = (1 - 1/m)^{kn} \approx e^{-kn/m} \]

• Let \(p = e^{-kn/m} \) and let \(\rho \) be the fraction of 0 bits after \(n \) elements inserted then

\[Pr(\text{false positive}) = (1 - \rho)^k \approx (1 - p)^k \]

• Where this last approximation holds because \(\rho \) is very close to \(p \) (by a Martingale argument beyond the scope of this class)
Analysis

• Want to minimize \((1 - p)^k\), which is equivalent to minimizing
 \[g = k \ln(1 - p) \]
• Trick: Note that \(g = -(m/n) \ln(p) \ln(1 - p)\)
• By symmetry, this is minimized when \(p = 1/2\) or equivalently
 \[k = (m/n) \ln 2 \]
• False positive rate is then \((1/2)^k \approx (.6185)^{m/n}\)
Tricks

- Can get the union of two sets by just taking the bitwise-or of the bit-vectors for the corresponding Bloom filters
- Can easily half the size of a bloom filter - assume size is power of 2 then just bitwise-or the first and second halves together
- Can approximate the size of the intersection of two sets - inner product of the bit vectors associated with the Bloom filters is a good approximation to this.
• Counting Bloom filters handle deletions: instead of storing bits, store integers in the slots. Insertion increments, deletion decrements.

• Bloomier Filters: Also allow for data to be inserted in the filter - similar functionality to hash tables but less space, and the possibility of false positives.
• A router forwards packets through a network
• A natural question for an administrator to ask is: what is the list of substrings of a fixed length that have passed through the router more than a predetermined threshold number of times
• This would be a natural way to try to, for example, identify worms and spam
• Problem: the number of packets passing through the router is *much* too high to be able to store counts for every substring that is seen!
Data Streams

- This problem motivates the data stream model
- Informally: there is a stream of data given as input to the algorithm
- The algorithm can take at most one pass over this data and must process it sequentially
- The memory available to the algorithm is much less than the size of the stream
- In general, we won’t be able to solve problems exactly in this model, only approximate
Our Problem

- We are presented with a stream of items i
- We want to get a good approximation to the value $\text{Count}(i, T)$, which is the number of times we have seen item i up to time T
Our solution will be to use a data structure called a *Count-Min Sketch*. This is a randomized data structure that will keep approximate values of $\text{Count}(i,T)$. It is implemented using k hash functions and m counters.
Count-Min Sketch

- Think of our m counters as being in a 2-dimensional array, with m/k counters per row and k rows
- Let $C_{a,b}$ be the counter in row a and column b
- Our hash functions map items from the universe into counters
- In particular, hash function h_a maps item i to counter $C_{a,h_a(i)}$
Updates

- Initially all counters are set to 0
- When we see item i in the data stream we do the following
- For each $1 \leq a \leq k$, increment $C_{a,h_a(i)}$
Count Approximations

- Let $C_{a,b}(T)$ be the value of the counter $C_{a,b}$ after processing T tuples.
- We approximate $\text{Count}(i,T)$ by returning the value of the \textit{smallest} counter associated with i.
- Let $m(i,T)$ be this value.
Analysis

Main Theorem:

- For any item i, $m(i, T) \geq \text{Count}(i, T)$
- With probability at least $1 - e^{-m\epsilon/e}$ the following holds:
 $m(i, T) \leq \text{Count}(i, T) + \epsilon T$
Proof

- Easy to see that $m(i, T) \geq \text{Count}(i, T)$, since each counter $C_{a, h_a(i)}$ incremented by c_t every time pair (i, c_t) is seen.
- Hard Part: Showing $m(i, T) \leq \text{Count}(i, T) + \epsilon T$.
- To see this, we will first consider the specific counter $C_{1, h_1(i)}$ and then use symmetry.
Proof

- Let Z_1 be a random variable giving the amount the counter is incremented by items other than i
- Let X_t be an indicator r.v. that is 1 if j is the t-th item, and $j \neq i$ and $h_1(i) = h_1(j)$
- Then $Z_1 = \sum_{t=1}^{T} X_t$
- But if the hash functions are “good”, then if $i \neq j$, $Pr(h_1(i) = h_1(j)) \leq k/m$ (specifically, we need the hash functions to come from a 2-universal family, but we won’t get into that in this class)
- Hence, $E(X_t) \leq k/m$
Thus, by linearity of expectation, we have that:

$$E(Z_1) = \sum_{t=1}^{T} \left(\frac{k}{m} \right) \leq T \frac{k}{m}$$ \hspace{1cm} (1)

We now need to make use of a very important inequality: Markov’s inequality
Markov’s Inequality

- Let X be a random variable that only takes on non-negative values
- Then for any $\lambda > 0$:

 \[Pr(X \geq \lambda) \leq E(X)/\lambda \]

- Proof of Markov’s: Assume instead that there exists a λ such that $Pr(X \geq \lambda)$ was actually larger than $E(X)/\lambda$
- But then the expected value of X would be at least $\lambda \times Pr(X \geq \lambda) > E(X)$, which is a contradiction!!!
Proof

- Now, by Markov’s inequality,

\[Pr(Z_1 \geq \epsilon T') \leq \frac{Tk/m}{(\epsilon T')} = \frac{k}{m\epsilon} \]

- This is the event where \(Z_1 \) is “bad” for item \(i \).
Proof (Cont’d)

• Now again assume our k hash functions are “good” in the sense that they are independent
• Then we have that

$$\prod_{i=1}^{k} Pr(Z_j \geq \epsilon T') \leq \left(\frac{k}{m\epsilon}\right)^k$$
Proof

• Finally, we want to choose a k that minimizes $f(k) = \left(\frac{k}{m\epsilon}\right)^k$

• Note that $\frac{\partial f}{\partial k} = \left(\frac{k}{m\epsilon}\right)^k \left(\ln \frac{k}{m\epsilon} + 1\right)$

• From this, we can see that the probability is minimized when $k = m\epsilon/e$, in which case

$$\left(\frac{k}{m\epsilon}\right)^k = e^{-m\epsilon/e}$$

• This completes the proof!
Recap

- Our Count-Min Sketch is very good at giving estimating counts of items with very little external space
- Tradeoff is that it only provides approximate counts, but we can bound the approximation!
- Note: Can use the Count-Min Sketch to keep track of all the items in the stream that occur more than a given threshold ("heavy hitters")
- Basic idea is to store an item in a list of "heavy hitters" if its count estimate ever exceeds some given threshold