Asymptotic Analysis (Review)

Jared Saia University of New Mexico

____ Outline ____

- Background
- Asymptotic Analysis
- L'Hopital's Rule
- Log Facts

Why study algorithms? _____

"Seven years of College down the toilet" - John Belushi in Animal House

Can you get a job without knowing algorithms? Yes, but:

- You won't understand why software systems work the way they do
- You won't learn the fundamentals of systematic thinking (aka computation/problem solving)
- You'll have less fun!

ullet Why study algorithms? (II) ullet

- Almost all big companies want programmers with knowledge of algorithms: Google, Facebook, Amazon, Oracle, Yahoo, Sandia, Los Alamos, etc.
- In most programming job interviews, they will ask you several questions about algorithms and/or data structures
- Your knowledge of algorithms will set you apart from the large masses of interviewees who know only how to program
- If you want to start your own company: many startups are successful because they've found better algorithms for solving a problem (e.g. Google, OpenAI, Akamai, etc.)

____ Why Study Algorithms? (III) ____

- You'll improve your research skills in almost any area
- You'll write better, faster code
- You'll learn to think more abstractly and mathematically
- It's one of the most challenging and interesting area of CS!

A Real Job Interview Question ___

The following is a real job interview question (thanks to Maksim Noy):

- You are given an array with integers between 1 and 1,000,000.
- All integers between 1 and 1,000,000 are in the array at least once, and one of those integers is in the array twice
- Q: Can you determine which integer is in the array twice? Can you do it while iterating through the array only once?

____ Solution ____

• Ideas on how to solve this problem?? What if we allowed multiple iterations?

Naive Algorithm _____

- Create a new array of ints between 1 and 1,000,000, which we'll use to count the occurrences of each number. Initialize all entries to 0
- Go through the input array and each time a number is seen,
 update its count in the new array
- Go through the count array and see which number occurs twice.
- Return this number

Naive Algorithm Analysis ____

- Q: How long will this algorithm take?
- A: We iterate through the numbers 1 to 1,000,000 *three* times!
- Note that we also use up a lot of space with the extra array
- This is wasteful of time and space, particularly as the input array gets very large (e.g. it might be a huge data stream)
- Q: Can we do better?

Ideas for a better Algorithm _

- Note that $\sum_{i=1}^{n} i = (n+1)n/2$
- ullet Let S be the sum of the input array
- Let x be the value of the repeated number
- Then S = (1,000,000 + 1)1,000,000/2 + x
- Thus x = S (1,000,000 + 1)1,000,000/2

___ A better Algorithm ____

- ullet Iterate through the input array, summing up all the numbers, let S be this sum
- Let x = S (1,000,000 + 1)1,000,000/2
- Return x

___ Analysis ____

- This algorithm takes iterates through the input array just once
- It uses up essentially no extra space
- It is at least three times faster than the naive algorithm
- Further, if the input array is so large that it won't fit in memory, this is the only algorithm which will work!
- These time and space bounds are the best possible

Take Away ____

- Designing good algorithms matters!
- Not always this easy to improve an algorithm
- However, with some thought and work, you can almost always get a better algorithm than the naive approach

How to analyze an algorithm? _____

- There are several resource bounds we could be concerned about: time, space, communication bandwidth, logic gates, etc.
- However, we are usually most concerned about time
- Recall that algorithms are independent of programming languages and machine types
- Q: So how do we measure resource bounds of algorithms

Random-access machine model _

- We will use RAM model of computation in this class
- All instructions operate in serial
- All basic operations (e.g. add, multiply, compare, read, store, etc.) take unit time
- All "atomic" data (chars, ints, doubles, pointers, etc.) take unit space

____ Worst Case Analysis ____

- We'll generally be pessimistic when we evaluate resource bounds
- We'll evaluate the run time of the algorithm on the worst possible input sequence
- Amazingly, in most cases, we'll still be able to get pretty good bounds
- Justification: The "average case" is often about as bad as the worst case.

Example Analysis _____

 \bullet Let's consider the more general problem of the duplicate number problem, where the numbers are 1 to n instead of 1 to 1,000,000

___ Algorithm 1 ____

- ullet Create a new "count" array of ints of size n, which we'll use to count the occurences of each number. Initialize all entries to 0
- Go through the input array and each time a number is seen, update its count in the "count" array
- As soon as a number is seen in the input array which has already been counted once, return this number

____ Algorithm 2 ____

- ullet Iterate through the input array, summing up all the numbers, let S be this sum
- Let x = S (n+1)n/2
- \bullet Return x

Example Analysis: Time ____

- Worst case: Algorithm 1 does 5*n operations (n inits to 0 in "count" array, n reads of input array, n reads of "count" array (to see if value is 1), n increments, and n stores into count array)
- Worst case: Algorithm 2 does 2*n+4 operations (n reads of input array, n additions to value S, 4 computations to determine x given S)

Example Analysis: Space _____

- ullet Worst Case: Algorithm 1 uses n additional units of space to store the "count" array
- Worst Case: Algorithm 2 uses 2 additional units of space

___ A Simpler Analysis ___

- Analysis above can be tedious for more complicated algorithms
- ullet In many cases, we don't care about constants. 5n is about the same as 2n+4 which is about the same as an+b for any constants a and b
- ullet However we do still care about the difference in space: n is very different from 2
- Asymptotic analysis is the solution to removing the tedium but ensuring good analysis

Asymptotic analysis? ____

- A tool for analyzing time and space usage of algorithms
- ullet Assumes input size is a variable, say n, and gives time and space bounds as a function of n
- Ignores multiplicative and additive constants
- Concerned only with the rate of growth
- E.g. Treats run times of n, 10,000*n+2000, and .5n+2 all the same (We use the term O(n) to refer to all of them)

ullet What is Asymptotic Analysis?(II) .

- Informally, O notation is the leading (i.e. quickest growing)
 term of a formula with the coefficient stripped off
- O is sort of a relaxed version of "≤"
- E.g. n is O(n) and n is also $O(n^2)$
- By convention, we use the smallest possible O value i.e. we say n is O(n) rather than n is $O(n^2)$

More Examples __

- E.g. n, 10,000n 2000, and .5n + 2 are all O(n)
- $n + \log n$, $n \sqrt{n}$ are O(n)
- $n^2 + n + \log n$, $10n^2 + n \sqrt{n}$ are $O(n^2)$
- $n \log n + 10n$ is $O(n \log n)$
- $10 * \log^2 n$ is $O(\log^2 n)$
- $n\sqrt{n} + n\log n + 10n$ is $O(n\sqrt{n})$
- 10,000, 2^{50} and 4 are O(1)

____ More Examples ____

- Algorithm 1 and 2 both take time O(n)
- Algorithm 1 uses O(n) extra space
- But, Algorithm 2 uses O(1) extra space

Formal Defn of Big-O ____

• A function f(n) is O(g(n)) if there exist positive constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$

Example ____

- Let's show that f(n) = 10n + 100 is O(g(n)) where g(n) = n
- ullet We need to give constants c and n_0 such that $0 \le f(n) \le cg(n)$ for all $n \ge n_0$
- In other words, we need constants c and n_0 such that $10n + 100 \le cn$ for all $n \ge n_0$

Example _____

We can solve for appropriate constants:

$$10n + 100 \leq cn \tag{1}$$

$$10 + 100/n \leq c \tag{2}$$

- ullet So if n>1, then c should be greater than 110.
- In other words, for all n > 1, $10n + 100 \le 110n$
- So 10n + 100 is O(n)

Questions ____

Express the following in O notation

- $n^3/1000 100n^2 100n + 3$
- $\log n + 100$
- $10 * \log^2 n + 100$
- $\sum_{i=1}^{n} i$

Relatives of big-O _____

The following are relatives of big-O:

- O "<"
- ← "="
- Ω ">"
- o "<"
- ω ">'

Formal Defns _____

- $O(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0 \}$
- $\Theta(g(n)) = \{f(n) : \text{there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$
- $\Omega(g(n)) = \{f(n) : \text{there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0 \}$

Formal Defns (II) _____

- $o(g(n)) = \{f(n) : \text{for any positive constant } c > 0 \text{ there exists}$ $n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}$
- $\omega(g(n)) = \{f(n) : \text{for any positive constant } c > 0 \text{ there exists } n_0 > 0 \text{ such that } 0 \le cg(n) < f(n) \text{ for all } n \ge n_0 \}$

Relatives of big-O _

When would you use each of these? Examples:

```
O "\leq" This algorithm is O(n^2) (i.e. worst case is \Theta(n^2))
\Theta "=" This algorithm is \Theta(n) (best and worst case are \Theta(n))
\Omega "\geq" Any comparison-based algorithm for sorting is \Omega(n \log n)
O "<" Can you write an algorithm for sorting that is O(n^2)?
O ">" This algorithm is not linear, it can take time O0
```

Rule of Thumb ____

- Let f(n), g(n) be two functions of n
- Let $f_1(n)$, be the fastest growing term of f(n), stripped of its coefficient.
- Let $g_1(n)$, be the fastest growing term of g(n), stripped of its coefficient.

Then we can say:

- If $f_1(n) \leq g_1(n)$ then f(n) = O(g(n))
- If $f_1(n) \ge g_1(n)$ then $f(n) = \Omega(g(n))$
- If $f_1(n) = g_1(n)$ then $f(n) = \Theta(g(n))$
- If $f_1(n) < g_1(n)$ then f(n) = o(g(n))
- If $f_1(n) > g_1(n)$ then $f(n) = \omega(g(n))$

More Examples _____

The following are all true statements:

- $\sum_{i=1}^{n} i^2$ is $O(n^3)$, $\Omega(n^3)$ and $\Theta(n^3)$
- $\log n$ is $o(\sqrt{n})$
- $\log n$ is $o(\log^2 n)$
- $10,000n^2 + 25n$ is $\Theta(n^2)$

Problems ____

True or False? (Justify your answer)

- $n^3 + 4$ is $\omega(n^2)$
- $n \log n^3$ is $\Theta(n \log n)$
- $\log^3 5n^2$ is $\Theta(\log n)$
- $10^{-10}n^2 + n$ is $\Theta(n)$
- $n \log n$ is $\Omega(n)$
- $n^3 + 4$ is $o(n^4)$

___ Another Example ____

- Let $f(n) = 10 \log^2 n + \log n$, $g(n) = \log^2 n$. Let's show that $f(n) = \Theta(g(n))$.
- We want positive constants c_1, c_2 and n_0 such that $0 \le c_1 g(n) \le f(n) \le c_2 g(n)$ for all $n \ge n_0$

$$0 \le c_1 \log^2 n \le 10 \log^2 n + \log n \le c_2 \log^2 n$$

Dividing by $\log^2 n$, we get:

$$0 \le c_1 \le 10 + 1/\log n \le c_2$$

• If we choose $c_1=1$, $c_2=11$ and $n_0=2$, then the above inequality will hold for all $n\geq n_0$

At-Home Exercise _____

Show that for f(n) = n + 100 and $g(n) = (1/2)n^2$, that $f(n) \neq \Theta(g(n))$

- What statement would be true if $f(n) = \Theta(g(n))$?
- Show that this statement can not be true.

L'Hopital _____

For any functions f(n) and g(n) which approach infinity and are differentiable, L'Hopital tells us that:

- $\lim_{n\to\infty} \frac{f(n)}{g(n)} = \lim_{n\to\infty} \frac{f'(n)}{g'(n)}$
- This can be useful, when proving o() and $\omega()$ relations

Example ____

- How to prove that $\ln n = o(\sqrt{n})$?
- Let $f(n) = \ln n$ and $g(n) = \sqrt{n}$
- Then f'(n) = 1/n and $g'(n) = (1/2)n^{-1/2}$
- So we have:

$$\lim_{n \to \infty} \frac{\ln n}{\sqrt{n}} = \lim_{n \to \infty} \frac{1/n}{(1/2)n^{-1/2}}$$
$$= \lim_{n \to \infty} \frac{2}{n^{1/2}}$$
$$= 0$$

• Thus \sqrt{n} grows faster than $\ln n$ and so $\ln n = O(\sqrt{n})$

All about logs _____

It rolls down stairs alone or in pairs, and over your neighbor's dog, it's great for a snack or to put on your back, it's log, log, log!

- "The Log Song" from the Ren and Stimpy Show
 - The log function shows up very frequently in algorithm analysis
 - As computer scientists, when we use log, we'll mean log_2 (i.e. if no base is given, assume base 2)

Definition _____

- $\bullet \, \log_x y$ is by definition the value z such that $x^z = y$
- $x^{\log_x y} = y$ by definition

Examples ____

- $\log 1 = 0$
- $\log 2 = 1$
- $\log 32 = 5$
- $\log 2^k = k$

Note: $\log n$ is way, way smaller than n for large values of n

Examples

- $\log_3 9 = 2$
- $\log_5 125 = 3$
- $\log_4 16 = 2$
- $\log_{24} 24^{100} = 100$

Facts about exponents _____

Recall that:

- $\bullet (x^y)^z = x^{yz}$
- $\bullet \ x^y x^z = x^{y+z}$

From these, we can derive some facts about logs

Facts about logs _____

To prove both equations, raise both sides to the power of 2, and use facts about exponents

- Fact 1: $\log(xy) = \log x + \log y$
- Fact 2: $\log a^c = c \log a$

Memorize these two facts

Incredibly useful fact about logs _____

• Fact 3: $\log_c a = \log a / \log c$

To prove this, consider the equation $a = c^{\log_c a}$, take \log_2 of both sides, and use Fact 2. **Memorize this fact**

Log facts to memorize _____

- Fact 1: $\log(xy) = \log x + \log y$
- Fact 2: $\log a^c = c \log a$
- Fact 3: $\log_c a = \log a / \log c$

These facts are sufficient for all your logarithm needs. (You just need to figure out how to use them)

Logs and O notation ____

- Note that $\log_8 n = \log n / \log 8$.
- Note that $\log_{600} n^{200} = 200 * \log n / \log 600$.
- Note that $\log_{100000} 30*n^2 = 2*\log n/\log 100000 + \log 30/\log 100000$
- Thus, $\log_8 n$, $\log_{600} n^{600}$, and $\log_{100000} 30*n^2$ are all $O(\log n)$
- In general, for any constants k_1 and k_2 , $\log_{k_1} n^{k_2} = k_2 \log n / \log k_1$, which is just $O(\log n)$

Take Away ____

- All log functions of form $k_1 \log_{k_2} k_3 * n^{k_4}$ for constants k_1 , k_2 , k_3 and k_4 are $O(\log n)$
- For this reason, we don't really "care" about the base of the log function when we do asymptotic notation
- Thus, binary search, ternary search and k-ary search all take $O(\log n)$ time

Important Note ___

- $\log^2 n = (\log n)^2$
- $\log^2 n$ is $O(\log^2 n)$, not $O(\log n)$
- \bullet This is true since $\log^2 n$ grows asymptotically faster than $\log n$
- All log functions of form $k_1 \log_{k_3}^{k_2} k_4 * n^{k_5}$ for constants k_1 , k_2 , k_3 , k_4 and k_5 are $O(\log^{k_2} n)$

____ An Exercise ____

Simplify and give O notation for the following functions. In the big-O notation, write all logs base 2:

- $\log 10n^2$
- $\log^2 n^4$
- $2^{\log_4 n}$
- $\log \log \sqrt{n}$

Does big-O really matter? ____

```
Let n=100000 and \Delta t=1\mu s

\log n   1.7*10^{-5} seconds

\sqrt{n}   3.2*10^{-4} seconds

n   .1 seconds

n\log n   1.2 seconds

n\sqrt{n}   31.6 seconds

n^2   2.8 hours

n^3   31.7 years

2^n   > 1 century
```

(from Classic Data Structures in C++ by Timothy Budd)