A BST is a red-black tree if it satisfies the RB-Properties

1. Every node is either red or black
2. The root is black
3. Every leaf (NIL) is black
4. If a node is red, then both its children are black
5. For each node, all paths from the node to descendant leaves contain the same number of black nodes
Black Height

- **Black-height** of a node x, $bh(x)$ is the number of black nodes on any path from, but not including x down to a leaf node.
- Note that the black-height of a node is well-defined since all paths have the same number of black nodes.
- The black-height of an RB-Tree is just the black-height of the root.

Key Lemma

- **Lemma**: A RB-Tree with n internal nodes has height at most $2 \log(n + 1)$.
- **Proof Sketch**:
 1. The subtree rooted at the node x contains at least $2^{bh(x)} - 1$ internal nodes.
 2. For the root r, $bh(r) \geq h/2$, thus $n \geq 2^{h/2} - 1$. Taking logs of both sides, we get that $h \leq 2 \log(n + 1)$.

Proof

1) The subtree rooted at the node x contains at least $2^{bh(x)} - 1$ internal nodes. Show by induction on the height of x.

- **BC**: If the height of x is 0, then x is a leaf, and subtree rooted at x does indeed contain $2^0 - 1 = 0$ internal nodes.
- **IH**: For all nodes y of height less than x, the subtree rooted at y contains at least $2^{bh(y)} - 1$ internal nodes.
- **IS**: Consider a node x which is an internal node with two children (all internal nodes have two children). Each child has black-height of either $bh(x)$ or $bh(x) - 1$ (the former if it is red, the latter if it is black). Since the height of these children is less than x, we can apply the inductive hypothesis to conclude that each child has at least $2^{bh(x) - 1} - 1$ internal nodes. This implies that the subtree rooted at x has at least $(2^{bh(x) - 1} - 1) + (2^{bh(x) - 1} - 1) + 1 = 2^{bh(x)} - 1$ internal nodes. This proves the claim.

Maintenance?

- How do we ensure that the Red-Black Properties are maintained?
- I.e. when we insert a new node, what do we color it? How do we re-arrange the new tree so that the Red-Black Property holds?
- How about for deletions?
Left-Rotate

- Left-Rotate(x) takes a node x and "rotates" x with its right child.
- Right-Rotate is the symmetric operation.
- Both Left-Rotate and Right-Rotate preserve the BST Property.
- We’ll use Left-Rotate and Right-Rotate in the RB-Insert procedure.

Example

Binary Search Tree Property

- Let x be a node in a binary search tree. If y is a node in the left subtree of x, then key(y) ≤ key(x). If y is a node in the right subtree of x then key(y) ≥ key(x).
In-Class Exercise

Show that Left-Rotate(x) maintains the BST Property. In other words, show that if the BST Property was true for the tree before the Left-Rotate(x) operation, then it’s true for the tree after the operation.

- Show that after rotation, the BST property holds for the entire subtree rooted at x
- Show that after rotation, the BST property holds for the subtree rooted at y
- Now argue that after rotation, the BST property holds for the entire tree

RB-Insert(T,z)

1. Set left(z) and right(z) to be NIL
2. Let y be the last node processed during a search for z in T
3. Insert z as the appropriate child of y (left child if key(z) ≤ y, right child otherwise)
4. Color z red
5. Call the procedure RB-Insert-Fixup

RB-Insert-Fixup(T,z)

RB-Insert-Fixup(T,z){
 while (color(p(z)) is red){
 case 1: z’s uncle, y, is red{
 do case 1
 }
 case 2: z’s uncle, y, is black and z is a right child{
 do case 2
 }
 case 3: z’s uncle, y, is black and z is a left child{
 do case 3
 }
 }
 color(root(T)) = black;
}

Case 1

[Diagram of tree before and after rotation]
Case 2 and 3

Loop Invariant

At the start of each iteration of the loop:

- Node z is red
- If parent(z) is the root, then parent(z) is black
- If there is a violation of the red-black properties, there is at most one violation, and it is either property 2 or 4. If there is a violation of property 2, it occurs because z is the root and is red. If there is a violation of property 4, it occurs because both z and parent(z) are red.

Pseudocode

- Detailed Pseudocode for RB-Insert and RB-Insert-Fixup is in the book, Chapter 13.3
- A detailed proof of correctness for RB-Insert-Fixup in the the same Chapter
- Code for RB-Deletion is also in Chapter 13

Other Balanced BSTs

- We’ll now briefly discuss some other balanced BSTs
- They all implement Insert, Delete, Lookup, Successor, Predecessor, Maximum and Minimum efficiently
AVL Trees

- An AVL tree is height-balanced: For each node x, the heights of the left and right subtrees of x differ by at most 1.
- Each node has an additional height field $h(x)$.
- Claim: An AVL tree with n nodes has height $O(\log n)$.

Claim: An AVL tree with n nodes has height $O(\log n)$

Q: For an AVL tree of height h, how many nodes must it have in it?

A: We can write a recurrence relation. Let $T(h)$ be the minimum number of nodes in a tree of height h.

Then $T(h) = T(h-1) + T(h-2) + 1$, $T(2) = T(1) \geq 1$.

This is similar to the recurrence relation for Fibonacci numbers! Solution:

$$T(h) = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^h - 2$$

AVL Tree Insertion

- After insert into an AVL tree, the tree may no longer be height-balanced.
- Need to “fix-up” the subtrees so that they become height-balanced again.
- Can do this using rotations (similar to case for RB-Trees).
- Similar story for deletions.

So we have the equation $n > T(h)$. Let $\phi = \frac{1 + \sqrt{5}}{2}$. Then:

$$n \geq \frac{1}{\sqrt{5}}(\phi^h) - 2 \quad \text{(1)}$$

$$\log n \geq \log \left(\frac{1}{\sqrt{5}} \right) + h \log \phi - 1 \quad \text{(2)}$$

$$\log n - \log \left(\frac{1}{\sqrt{5}} \right) + 1 \geq h \log \phi \quad \text{(3)}$$

$$C \cdot \log n \geq h \quad \text{(4)}$$

Where the final inequality holds for appropriate constant C, and for n large enough. The final inequality implies that $h = O(\log n)$.

AVL Trees

- Claim: An AVL tree with n nodes has height $O(\log n)$.
- Q: For an AVL tree of height h, how many nodes must it have in it?
- A: We can write a recurrence relation. Let $T(h)$ be the minimum number of nodes in a tree of height h.
- Then $T(h) = T(h-1) + T(h-2) + 1$, $T(2) = T(1) \geq 1$.
- This is similar to the recurrence relation for Fibonacci numbers! Solution:

$$T(h) = \frac{1}{\sqrt{5}} \left(\frac{1 + \sqrt{5}}{2} \right)^h - 2$$
B-Trees

- B-Trees are balanced search trees designed to work well on disks
- B-Trees are not binary trees: each node can have many children
- Each node of a B-Tree contains several keys, not just one
- When doing searches, we decide which child link to follow by finding the correct interval of our search key in the key set of the current node.

Disk Accesses

- Consider any search tree
- The number of disk accesses per search will dominate the run time
- Unless the entire tree is in memory, there will usually be a disk access every time an arbitrary node is examined
- The number of disk accesses for most operations on a B-tree is proportional to the height of the B-tree
- I.e. The info on each node of a B-tree can be stored in main memory

B-Tree Properties

The following is true for every node x

- x stores keys, $key_1(x), \ldots, key_l(x)$ in sorted order (nondecreasing)
- x contains pointers, $c_1(x), \ldots, c_{i+1}(x)$ to its children
- Let k_i be any key stored in the subtree rooted at the i-th child of x, then $k_1 \leq key_1(x) \leq k_2 \leq key_2(x) \cdots \leq key_l(x) \leq k_{l+1}$
Note

- The above properties imply that the height of a B-tree is no more than \(\log_t \frac{n+1}{2} \), for \(t \geq 2 \), where \(n \) is the number of keys.
- If we make \(t \), larger, we can save a larger (constant) fraction over RB-trees in the number of nodes examined.
- A (2-3-4)-tree is just a B-tree with \(t = 2 \).

In-Class Exercise

We will now show that for any B-Tree with height \(h \) and \(n \) keys, \(h \leq \log_t \frac{n+1}{2} \), where \(t \geq 2 \).

Consider a B-Tree of height \(h > 1 \)

- Q1: What is the minimum number of nodes at depth 1, 2, and 3?
- Q2: What is the minimum number of nodes at depth \(i \)?
- Q3: Now give a lowerbound for the total number of keys (e.g. \(n \geq \ldots \)?)
- Q4: Show how to solve for \(h \) in this inequality to get an upperbound on \(h \).

Splay Trees

- A Splay Tree is a kind of BST where the standard operations run in \(O(\log n) \) amortized time.
- This means that over \(l \) operations (e.g. Insert, Lookup, Delete, etc), where \(l \) is sufficiently large, the total cost is \(O(l \times \log n) \).
- In other words, the average cost per operation is \(O(\log n) \).
- However a single operation could still take \(O(n) \) time.
- In practice, they are very fast.

Skip Lists

- Technically, not a BST, but they implement all of the same operations.
- Very elegant randomized data structure, simple to code but analysis is subtle.
- They guarantee that, with high probability, all the major operations take \(O(\log n) \) time.
- We’ll discuss them more next class.
High Level Analysis

Comparison of various BSTs

• RB-Trees: + guarantee $O(\log n)$ time for each operation, easy to augment, – high constants
• AVL-Trees: + guarantee $O(\log n)$ time for each operation, – high constants
• B-Trees: + works well for trees that won’t fit in memory, – inserts and deletes are more complicated
• Splay Trees: + small constants, – amortized guarantees only
• Skip Lists: + easy to implement, – runtime guarantees are probabilistic only

Which Data Structure to use?

• Splay trees work very well in practice, the “hidden constants” are small
• Unfortunately, they can not guarantee that every operation takes $O(\log n)$
• When this guarantee is required, B-Trees are best when the entire tree will not be stored in memory
• If the entire tree will be stored in memory, RB-Trees, AVL-Trees, and Skip Lists are good