Skip List

- Technically, not a BST, but they implement all of the same operations
- Very elegant randomized data structure, simple to code but analysis is subtle
- They guarantee that, with high probability, all the major operations take $O(\log n)$ time

A skip list is basically a collection of doubly-linked lists, L_1, L_2, \ldots, L_x, for some integer x.
- Each list has a special head and tail node, the keys of these nodes are assumed to be $-\text{MAXNUM}$ and $+\text{MAXNUM}$ respectively.
- The keys in each list are in sorted order (non-decreasing).

Every node is stored in the bottom list.
- For each node in the bottom list, we flip a coin over and over until we get tails. For each heads, we make a duplicate of the node.
- The duplicates are stacked up in levels and the nodes on each level are strung together in sorted linked lists.
- Each node v stores a search key ($\text{key}(v)$), a pointer to its next lower copy ($\text{down}(v)$), and a pointer to the next node in its level ($\text{right}(v)$).
Search

- To do a search for a key, x, we start at the leftmost node L in the highest level
- We then scan through each level as far as we can without passing the target value x and then proceed down to the next level
- The search ends either when we find the key x or fail to find x on the lowest level

```cpp
SkipListFind(x, L){
    v = L;
    while (v != NULL) and (Key(v) != x){
        if (Key(Right(v)) > x)
            v = Down(v);
        else
            v = Right(v);
    }
    return v;
}
```
Insert

\(p \) is a constant between 0 and 1, typically \(p = 1/2 \), let \(\text{rand()} \)
return a random value between 0 and 1

Insert(k){
First call Search(k), let pLeft be the leftmost elem <= k in L_1
Insert k in L_1, to the right of pLeft
i = 2;
while (rand()<= p){
insert k in the appropriate place in L_i;
}

Deletion

• Deletion is very simple
• First do a search for the key to be deleted
• Then delete that key from all the lists it appears in from
the bottom up, making sure to “zip up” the lists after the
deletion

Analysis

• Intuitively, each level of the skip list has about half the num-
ber of nodes of the previous level, so we expect the total
number of levels to be about \(O(\log n) \)
• Similarly, each time we add another level, we cut the search
time in half except for a constant overhead
• So after \(O(\log n) \) levels, we would expect a search time of
\(O(\log n) \)
• We will now formalize these two intuitive observations

Height of Skip List

• For some key, \(i \), let \(X_i \) be the maximum height of \(i \) in the
skip list.
• Q: What is the probability that \(X_i \geq 2\log n \)?
• A: If \(p = 1/2 \), we have:
\[
P(X_i \geq 2\log n) = \left(\frac{1}{2}\right)^{2\log n} = \frac{1}{(2\log n)^2} = \frac{1}{n^2}
\]
• Thus the probability that a particular key \(i \) achieves height
\(2\log n \) is \(\frac{1}{n^2} \)
Height of Skip List

- Q: What is the probability that any key achieves height $2 \log n$?
- A: We want

 $$P(X_1 \geq 2 \log n \text{ or } X_2 \geq 2 \log n \text{ or } \ldots \text{ or } X_n \geq 2 \log n)$$

- By a Union Bound, this probability is no more than

 $$P(X_1 \geq k \log n) + P(X_2 \geq k \log n) + \cdots + P(X_n \geq k \log n)$$

- Which equals:

 $$\sum_{i=1}^{n} \frac{1}{n^2} = \frac{n}{n^2} = \frac{1}{n}$$

- This probability gets small as n gets large
- In particular, the probability of having a skip list of size exceeding $2 \log n$ is $o(1)$

 - If an event occurs with probability $1 - o(1)$, we say that it occurs with high probability
 - **Key Point:** The height of a skip list is $O(\log n)$ with high probability.

In-Class Exercise Trick

A trick for computing expectations of discrete positive random variables:

- Let X be a discrete r.v., that takes on values from 1 to n

 $$E(X) = \sum_{i=1}^{n} P(X \geq i)$$

- Why?

 $$\sum_{i=1}^{n} P(X \geq i) = P(X = 1) + P(X = 2) + P(X = 3) + \ldots$$

 $$+ P(X = 2) + P(X = 3) + P(X = 4) + \ldots$$

 $$+ P(X = 3) + P(X = 4) + P(X = 5) + \ldots$$

 $$+ \cdots$$

 $$= 1 \cdot P(X = 1) + 2 \cdot P(X = 2) + 3 \cdot P(X = 3) + \ldots$$

 $$= E(X)$$
In-Class Exercise

Q: How much memory do we expect a skip list to use up?

• Let \(X_i \) be the number of lists that element \(i \) is inserted in.
• Q: What is \(P(X_i \geq 1) \), \(P(X_i \geq 2) \), \(P(X_i \geq 3) \)?
• Q: What is \(E(X_i) \)?
• Q: Let \(X = \sum_{i=1}^{n} X_i \). What is \(E(X) \)?

Search Time

• It's easier to analyze the search time if we imagine running the search backwards.
• Imagine that we start at the found node \(v \) in the bottommost list and we trace the path backwards to the top leftmost sentinel, \(L \).
• This will give us the length of the search path from \(L \) to \(v \) which is the time required to do the search.

Backwards Search

```plaintext
SLFback(v){
    while (v != L){
        if (Up(v)!=NIL)
            v = Up(v);
        else
            v = Left(v);
    }
}
```

Backward Search

• For every node \(v \) in the skip list \(Up(v) \) exists with probability 1/2. So for purposes of analysis, \(SLFBack \) is the same as the following algorithm:

```plaintext
FlipWalk(v){
    while (v != L){
        if (COINFLIP == HEADS)
            v = Up(v);
        else
            v = Left(v);
    }
}
```
Analysis

- For this algorithm, the expected number of heads is exactly the same as the expected number of tails.
- Thus the expected run time of the algorithm is twice the expected number of upward jumps.
- Since we already know that the number of upward jumps is $O(\log n)$ with high probability, we can conclude that the expected search time is $O(\log n)$.

20