CS 561, Lecture 19

Jared Saia
University of New Mexico

Today's Outline \qquad

- Data Structures for Disjoint Sets
\qquad
\qquad

We want to support the following operations:

- A disjoint set data structure maintains a collection $\left\{S_{1}, S_{2}, \ldots S_{k}\right\}$ of disjoint dynamic sets
- Each set is identified by a representative which is a member of that set
- Let's call the members of the sets objects.
- Make-Set (x) : creates a new set whose only member (and representative) is x
- Union (x, y) : unites the sets that contain x and y (call them S_{x} and S_{y}) into a new set that is $S_{x} \cup S_{y}$. The new set is added to the data structure while S_{x} and S_{y} are deleted. The representative of the new set is any member of the set.
- Find-Set (x) : Returns a pointer to the representative of the (unique) set containing x
\qquad
\qquad Analysis \qquad
- We will analyze this data structure in terms of two parameters:

1. n, the number of Make-Set operations
2. m, the total number of Make-Set, Union, and Find-Set operations

- Since the sets are always disjoint, each Union operation reduces the number of sets by 1
- So after $n-1$ Union operations, only one set remains
- Thus the number of Union operations is at most $n-1$
- Note also that since the Make-Set operations are included in the total number of operations, we know that $m \geq n$
- We will in general assume that the Make-Set operations are the first n performed

Application

\qquad

- Myspace is a web site which keeps track of a social network
- When you are invited to join Myspace, you become part of the social network of the person who invited you to join
- In other words, you can read profiles of people who are friends of your initial friend, or friends of friends of your initial friend, etc., etc.
- If you forge links to new people in Myspace, then your social network grows accordingly
- Consider a simplified version of Myspace
- Every object is a person and every set represents a social network
- Whenever a person in the set S_{1} forges a link to a person in the set S_{2}, then we want to create a new larger social network $S_{1} \cup S_{2}$ (and delete S_{1} and S_{2})
- For obvious reasons, we want these operation of Union, Make-Set and Find-Set to be as fast as possible
\qquad
\qquad Applications \qquad
- Make-Set("Bob"), Make-Set("Sue"), Make-Set("Jane"), MakeSet("Joe")
- Union("Bob", "Joe")
there are now three sets $\{$ Bob, Joe $\},\{J a n e\},\{S u e\}$
- Union("Jane", "Sue")
there are now two sets $\{$ Bob, Joe $\},\{$ Jane, Sue $\}$
- Union ("Bob"," Jane")
there is now one set $\{$ Bob, Joe, Jane, Sue $\}$
- We will also see that this data structure is used in Kruskal's minimum spanning tree algorithm
- Another application is maintaining the connected components of a graph as new vertices and edges are added

Tree Implementation \qquad

- One of the easiest ways to store sets is using trees.
- Each object points to another object, called its parent, except for the leader of each set, which points to itself and thus is the root of the tree.

Tree Implementation

\qquad

- Make-Set is trivial (we just create one root node)
- Find-Set traverses the parent pointers up to the leader (the root node).
- Union just redirects the parent pointer of one leader to the other.
(Notice that unlike most tree data structures, objects do not have pointers down to their children.)
\qquad — \qquad

```
Make-Set(x){
    parent(x) = x;
}
Find-Set(x){
    while(x!=parent(x))
        x = parent(x);
    return x;
}
Union(x,y){
    xParent = Find-Set(x);
    yParent = Find-Set(y);
    parent(yParent) = xParent;
}
```


Merging two sets stored as trees. Arrows point to parents. The shaded node has a new parent.

Analysis

\qquad

- Make-Set takes $\Theta(1)$ time
- Union takes $\Theta(1)$ time in addition to the calls to Find-Set
- The running time of Find-Set is proportional to the depth of x in the tree. In the worst case, this could be $\Theta(n)$ time
\qquad The Code \qquad

```
Make-Set(x){
    parent(x) = x;
    size(x) = 1;
}
Union(x,y){
    xRep = Find-Set(x);
    yRep = Find-Set(y);
    if (size(xRep)) > size(yRep)){
        parent(yRep) = xRep;
        size(xRep) = size(xRep) + size(yRep);
    }else{
        parent(xRep) = yRep;
        size(yRep) = size(yRep) + size(xRep);
        }
    }
```

- It turns out that for these algorithms, all the functions run in $O(\log n)$ time
- We will be showing this is the case in the In-Class exercise
- We will show this by showing that the heights of all the trees are always logarithmic in the number of nodes in the tree

In-Class Exercise

\qquad The Facts \qquad

- We will show that the depth of our trees are no more than $O(\log x)$ where x is the number of nodes in the tree
- We will show this using proof by induction on, x, the number of nodes in the tree
- We will consider a tree with x nodes and, using the inductive hypothesis (and facts about our algs), show that it has a height of of $O(\log x)$
- Let T be a tree with x nodes that was created by a call to the Union Algorithm
- Note that T must have been created by merging two trees $T 1$ and $T 2$
- Let $T 2$ be the tree with the smaller number of nodes
- Then the root of T is the root of $T 1$ and a child of this root is the root of the tree $T 2$
- Key fact: the number of nodes in $T 2$ is no more than $x / 2$
\qquad
\qquad

Problem

\qquad

To prove: Any tree T with x nodes, created by our algorithms, has depth no more than $\log x$

- Q1: Show the base case $(x=1)$
- Q2: What is the inductive hypothesis?
- Q3: Complete the proof by giving the inductive step. (hint: note that $\operatorname{depth}(T)=\operatorname{Max}(\operatorname{depth}(T 1), \operatorname{depth}(T 2)+1)$
- Q: $O(\log n)$ per operation is not bad but can we do better?
- A: Yes we can actually do much better but it's going to take some cleverness (and amortized analysis)

Shallow Threaded Trees

\qquad Union \qquad

- One good idea is to just have every object keep a pointer to the leader of it's set
- In other words, each set is represented by a tree of depth 1
- Then Make-Set and Find-Set are completely trivial, and they both take $O(1)$ time
- Q: What about the Union operation?
- To do a union, we need to set all the leader pointers of one set to point to the leader of the other set
- To do this, we need a way to visit all the nodes in one of the sets
- We can do this easily by "threading" a linked list through each set starting with the sets leaders
- The threads of two sets can be merged by the Union algorithm in constant time
\qquad -

```
Make-Set(x){
```

 leader(x) = x;
    ```
    leader(x) = x;
    next(x) = NULL;
    next(x) = NULL;
}
}
Find-Set(x){
Find-Set(x){
    return leader(x);
    return leader(x);
}
```

```
}
```

```
```

Union(x,y){
xRep = Find-Set(x);
yRep = Find-Set(y);
leader(y) = xRep;
while(next(y)!=NULL){
y = next(y);
leader(y) = xRep;
}
next(y) = next(xRep);
next(xRep) = yRep;
}

```

The Code \(\qquad\)
\(\qquad\)


Merging two sets stored as threaded trees.
Bold arrows point to leaders; lighter arrows form the threads.
Shaded nodes have a new leader.
- Worst case time of Union is a constant times the size of the larger set
- So if we merge a one-element set with a \(n\) element set, the run time can be \(\Theta(n)\)
- In the worst case, it's easy to see that \(n\) operations can take \(\Theta\left(n^{2}\right)\) time for this alg
\(\qquad\)
\(\qquad\)
- The main problem here is that in the worst case, we always get unlucky and choose to update the leader pointers of the larger set
- Instead let's purposefully choose to update the leader pointers of the smaller set
- This will require us to keep track of the sizes of all the sets, but this is not difficult
```

Make-Weighted-Set(x){
leader(x) = x;
next(x) = NULL;
size(x) = 1;
}

```

\section*{The Code}
\(\qquad\)
Weighted-Union ( \(\mathrm{x}, \mathrm{y}\) ) \{
    xRep \(=\) Find-Set (x);
    yRep \(=\) Find-Set ( y )
    if(size (xRep)>size(yRep) \{
        Union(xRep, yRep);
        size (xRep) \(=\operatorname{size}(x R e p)+\operatorname{size}(y R e p) ;\)
    \}else\{
        Union(yRep, xRep);
        size (yRep) \(=\operatorname{size}(x R e p)+\operatorname{size}(y R e p) ;\)
    \}
\}
- The Weighted-Union algorithm still takes \(\Theta(n)\) time to merge two \(n\) element sets
- However in an amortized sense, it is more efficient:
- A sequence of \(m\) Make-Weighted-Set operations and \(n\) WeightedUnion operations takes \(O(m+n \log n)\) time in the worst case.```

