Disjoint Sets

- A disjoint set data structure maintains a collection \(\{S_1, S_2, \ldots, S_k\} \) of disjoint dynamic sets
- Each set is identified by a representative which is a member of that set
- Let’s call the members of the sets objects.

Operations

We want to support the following operations:

- **Make-Set(\(x \)):** creates a new set whose only member (and representative) is \(x \)
- **Union(\(x, y \)):** unites the sets that contain \(x \) and \(y \) (call them \(S_x \) and \(S_y \)) into a new set that is \(S_x \cup S_y \). The new set is added to the data structure while \(S_x \) and \(S_y \) are deleted. The representative of the new set is any member of the set.
- **Find-Set(\(x \)):** Returns a pointer to the representative of the (unique) set containing \(x \)
Simple Union

Make-Set(x)
 parent(x) = x;
 size(x) = 1;
}

Simple-Union(x,y)
 xRep = Find-Set(x);
 yRep = Find-Set(y);
 if (size(xRep)) > size(yRep)){
 parent(yRep) = xRep;
 }else{
 parent(xRep) = yRep;
 }
 size(yRep) = size(yRep) + size(xRep);
}

Analysis

• We showed in last class that the heights of all trees are no more than logarithmic in the number of nodes in the tree
• Thus all of these operations take $O(\log n)$ time
• Q: Can we do better?
• A: Yes we can do much better in an amortized sense.

Shallow Threaded Trees

• One good idea is to just have every object keep a pointer to the leader of it's set
• In other words, each set is represented by a tree of depth 1
• Then Make-Set and Find-Set are completely trivial, and they both take $O(1)$ time
• Q: What about the Union operation?

Union

• To do a union, we need to set all the leader pointers of one set to point to the leader of the other set
• To do this, we need a way to visit all the nodes in one of the sets
• We can do this easily by “threading” a linked list through each set starting with the sets leaders
• The threads of two sets can be merged by the Union algorithm in constant time
The Code

```
Make-Set(x){
    leader(x) = x;
    next(x) = NULL;
}
Find-Set(x){
    return leader(x);
}
```

```
Union(x,y){
    xRep = Find-Set(x);
    yRep = Find-Set(y);
    leader(y) = xRep;
    while(next(y)!=NULL){
        y = next(y);
        leader(y) = xRep;
    }
    next(y) = next(xRep);
    next(xRep) = yRep;
}
```

Example

Merging two sets stored as threaded trees.
Bold arrows point to leaders; lighter arrows form the threads.
Shaded nodes have a new leader.

Analysis

- Worst case time of Union is a constant times the size of the larger set
- So if we merge a one-element set with a n element set, the run time can be $\Theta(n)$
- In the worst case, it's easy to see that n operations can take $\Theta(n^2)$ time for this alg
The main problem here is that in the worst case, we always get unlucky and choose to update the leader pointers of the larger set.

Instead let's purposefully choose to update the leader pointers of the smaller set.

To do this, we will need to keep track of the sizes of all the sets.

```cpp
Make-Weighted-Set(x){
    leader(x) = x;
    next(x) = NULL;
    size(x) = 1;
}
```

The Weighted-Union algorithm still takes $\Theta(n)$ time to merge two n element sets.

However in an amortized sense, it is more efficient.

Intuitively, in order to merge two large sets, we need to perform a large number of cheap Weighted-Unions.

We will show that a sequence of n Make-Weighted-Set operations and m Weighted-Union operations takes $O(m+n \log n)$ time in the worst case.
Proof

- Whenever the leader of an object \(x \) is changed by a call to Weighted-Union, the size of the set containing \(x \) increases by a factor of at least 2.
- Thus if the leader of \(x \) has changed \(k \) times, the set containing \(x \) has at least \(2^k \) members.
- After the sequence of operations ends, the largest set has at most \(n \) members.
- Thus the leader of any object \(x \) has changed at most \(\lfloor \log n \rfloor \) times.

Proof

- Let \(n \) be the number of calls to Make-Weighted-Set and \(m \) be the number of calls to Weighted-Union.
- We’ve shown that each of the objects that are not in singleton sets had at most \(O(\log n) \) leader changes.
- Thus, the total amount of work done in updating the leader pointers is \(O(n \log n) \).

Analysis

- We’ve just shown that for \(n \) calls to Make-Weighted-Set and \(m \) calls to Weighted-Union, that total cost for updating leader pointers is \(O(n \log n) \).
- We know that other than the work needed to update these leader pointers, each call to one of our functions does only constant work.
- Thus total amount of work is \(O(n \log n + m) \).
- Thus each Weighted-Union call has amortized cost of \(O(\log n) \).

Side Note: We’ve just used the aggregate method of amortized analysis.
Path Compression

- We start with the unthreaded tree representation (from Simple-Union)
- Key Observation is that in any Find operation, once we get the leader of an object \(x \), we can speed up future Find’s by redirecting \(x \)'s parent pointer directly to that leader
- We can also change the parent pointers of all ancestors of \(x \) all the way up to the root (We’ll do this using recursion)
- This modification to Find is called path compression

Example

![Path compression during Find\((c)\). Shaded nodes have a new parent.](image)

PC-Find Code

```plaintext
PC-Find(x){
    if(x!=Parent(x)){
        Parent(x) = PC-Find(Parent(x));
    }
    return Parent(x);
}
```

Rank

- For ease of analysis, instead of keeping track of the size of each of the trees, we will keep track of the rank
- Each node will have an associated rank
- This rank will give an estimate of the log of the number of elements in the set
Code

```plaintext
PC-MakeSet(x) {
    parent(x) = x;
    rank(x) = 0;
}
PC-Union(x,y) {
    xRep = PC-Find(x);
    yRep = PC-Find(y);
    if(rank(xRep) > rank(yRep))
        parent(yRep) = xRep;
    else {
        parent(xRep) = yRep;
        if(rank(xRep) == rank(yRep))
            rank(yRep)++;
    }
}
```

Rank Facts

- If an object x is not the set leader, then the rank of x is strictly less than the rank of its parent
- For a set X, $\text{size}(X) \geq 2^{\text{rank}(\text{leader}(X))}$ (can show using induction)
- Since there are n objects, the highest possible rank is $O(\log n)$
- Only set leaders can change their rank

Blocks

Can also say that there are at most $n/2^r$ objects with rank r.

- When the rank of a set leader x changes from $r - 1$ to r, mark all nodes in that set. At least 2^r nodes are marked and each of these marked nodes will always have rank less than r
- There are n nodes total and any object with rank r marks 2^r of them
- Thus there can be at most $n/2^r$ objects of rank r

- We will also partition the objects into several numbered blocks
- x is assigned to block number $\log^*(\text{rank}(x))$
- Intuitively, $\log^* n$ is the number of times you need to hit the log button on your calculator, after entering n, before you get 1
- In other words x is in block b if
 \[2 \uparrow\uparrow (b - 1) < \text{rank}(x) \leq 2 \uparrow\uparrow b,\]
 where $\uparrow\uparrow$ is defined as in the next slide
Definition

• $2 \uparrow\uparrow b$ is the tower function

$$2 \uparrow\uparrow b = 2^{2^{\cdot^{2^{-b}}}} = \begin{cases} 1 & \text{if } b = 0 \\ 2^{2^{\uparrow\uparrow(b-1)}} & \text{if } b > 0 \end{cases}$$

Number of Blocks

• Every object has a rank between 0 and $\lfloor \log n \rfloor$
• So the blocks numbers range from 0 to $\log^* \lfloor \log n \rfloor = \log^*(n)-1$
• Hence there are $\log^* n$ blocks

Number Objects in Block b

• Since there are at most $n/2^r$ objects with any rank r, the total number of objects in block b is at most

$$\sum_{r=2^{\uparrow\uparrow(b-1)}+1}^{2^{\uparrow\uparrow b}} \frac{n}{2^r} < \sum_{r=2^{\uparrow\uparrow(b-1)}+1}^{\infty} \frac{n}{2^r} = \frac{n}{2^{2^{\uparrow\uparrow(b-1)}}} = \frac{n}{2 \uparrow\uparrow b}.$$

Theorem

• Theorem: If we use both PC-Find and PC-Union (i.e. Path Compression and Weighted Union), the worst-case running time of a sequence of m operations, n of which are MakeSet operations, is $O(m \log^* n)$
• Each PC-MakeSet and PC-Union operation takes constant time, so we need only show that any sequence of m PC-Find operations require $O(m \log^* n)$ time in the worst case
• We will use a kind of accounting method to show this
Proof
- The cost of PC-Find(x_0) is proportional to the number of nodes on the path from x_0 up to its leader.
- Each object $x_0, x_1, x_2, \ldots, x_l$ on the path from x_0 to its leader will pay a 1 tax into one of several bank accounts.
- After all the Find operations are done, the total amount of money in these accounts will give us the total running time.

Taxation
- The leader x_l pays into the leader account.
- The child of the leader x_{l-1} pays into the child account.
- Any other object x_i in a different block from its parent x_{i+1} pays into the block account.
- Any other object x_i in the same block as its parent x_{i+1} pays into the path account.

Example
Different nodes on the find path pay into different accounts: B=block, P=path, C=child, L=leader. Horizontal lines are boundaries between blocks. Only the nodes on the find path are shown.

Leader, Child and Block accounts
- During any Find operation, one dollar is paid into the leader account.
- At most one dollar is paid into the child account.
- At most one dollar is paid into the block account for each of the $\log^* n$ blocks.
- Thus when the sequence of m operations ends, these accounts share a total of at most $2m + m \log^* n$ dollars.
Path Account

- The only remaining difficulty is the Path account
- Consider an object \(x_i \) in block \(b \) that pays into the path account
- This object is not a set leader so its rank can never change.
- The parent of \(x_i \) is also not a set leader, so after path compression, \(x_i \) gets a new parent, \(x_l \), whose rank is strictly larger than its old parent \(x_{i+1} \)
- Since \(\text{rank}(\text{parent}(x)) \) is always increasing, parent of \(x_i \) must eventually be in a different block than \(x_i \), after which \(x_i \) will never pay into the path account
- \(\text{Thus } x_i \text{ pays into the path account at most once for every rank in block } b, \text{ or less than } 2 \uparrow \uparrow b \text{ times total} \)

Take Away

- We can now say that each call to PC-Find has amortized cost \(O(\log^* n) \), which is significantly better than the worst case cost of \(O(\log n) \)
- The book shows that PC-Find has amortized cost of \(O(A(n)) \) where \(A(n) \) is an even slower growing function than \(\log^* n \)

- Since block \(b \) contains less than \(n/(2 \uparrow \uparrow b) \) objects, and each of these objects contributes less than \(2 \uparrow \uparrow b \) dollars, the total number of dollars contributed by objects in block \(b \) is less than \(n \) dollars to the path account
- There are \(\log^* n \) blocks so the path account receives less than \(n \log^* n \) dollars total
- Thus the total amount of money in all four accounts is less than \(2m + m \log^* n + n \log^* n = O(m \log^* n) \), and this bounds the total running time of the \(m \) operations.