Outline

“For NASA, space is still a high priority”, Dan Quayle

• Priority Queues
• Quicksort

Priority Queues

A Priority Queue is an ADT for a set S which supports the following operations:

• Insert (S,x): inserts x into the set S
• Maximum (S): returns the maximum element in S
• Extract-Max (S): removes and returns the element of S with the largest key
• Increase-Key (S,x,k): increases the value of x’s key to the new value k (k is assumed to be as large as x’s current key)

(note: can also have an analogous min-priority queue)

Applications of Priority Queue

• Application: Scheduling jobs on a workstation
• Priority Queue holds jobs to be performed and their priorities
• When a job is finished or interrupted, highest-priority job is chosen using Extract-Max
• New jobs can be added using Insert

(note: an application of a min-priority queue is scheduling events in a simulation)
Implementation

- A Priority Queue can be implemented using heaps
- We’ll show how to implement each of these four functions using heaps

Heap-Maximum

Heap-Maximum (A)

1. return A[1]

Heap-Extract-Max

Heap-Extract-Max (A)

1. if (heap-size (A) < 1) then return “error”
2. max = A[1];
4. heap-size (A)--;
5. Max-Heapify (A,1);
6. return max;

Heap-Increase-Key

Heap-Increase-Key (A,i,key)

1. if (key < A[i]) then error “new key is smaller than current key”
2. A[i] = key;
3. while (i > 1 and A[Parent (i)] < A[i])
 (a) do exchange A[i] and A[Parent (i)]
 (b) i = Parent (i);
Heap-Insert (A, key)
1. heap-size (A) ++;
2. A[heap-size (A)] = - infinity
3. Heap-Increase-Key (A, heap-size (A), key)

Analysis
• Heap-Maximum takes $O(1)$ time
• Heap-Extract-Max takes $O(\log n)$
• Heap-Increase-Key takes $O(\log n)$
• Heap-Insert takes $O(\log n)$

Correctness?

At-Home Exercise
• Imagine you have a min-heap with the following operations defined and taking $O(\log n)$:
 – (key, data) Heap-Extract-Min (A)
 – Heap-Insert (A, key, data)
• Now assume you’re given k sorted lists, each of length n/k
• Use this min-heap to give a $O(n \log k)$ algorithm for merging these k lists into one sorted list of size n.

At-Home Exercise
• Q1: What is the high level idea for solving this problem?
• Q2: What is the pseudocode for solving the problem?
• Q3: What is the runtime analysis?
• Q4: What would be an appropriate loop invariant for proving correctness of the algorithm?
Quicksort

• Based on divide and conquer strategy
• Worst case is $\Theta(n^2)$
• Expected running time is $\Theta(n \log n)$
• An In-place sorting algorithm
• Almost always the fastest sorting algorithm

Divide:
Pick some element $A[q]$ of the array A and partition A into two arrays A_1 and A_2 such that every element in A_1 is $\leq A[q]$, and every element in A_2 is $> A[p]$

Conquer:
Recursively sort A_1 and A_2

Combine:
A_1 concatenated with $A[q]$ concatenated with A_2 is now the sorted version of A

The Algorithm

//PRE: A is the array to be sorted, $p\geq1$;
// r is \leq the size of A
//POST: $A[p..r]$ is in sorted order
Quicksort (A,p,r){
 if ($p<r$){
 q = Partition (A,p,r);
 Quicksort ($A,p,q-1$);
 Quicksort ($A,q+1,r$);
 }
}

Partition

//PRE: $A[p..r]$ is the array to be partitioned, $p\geq1$ and $r \leq$ size of A
// r is the pivot element
//POST: Let A' be the array A after the function is run. Then
// $A'[p..r]$ contains the same elements as $A[p..r]$. Further,
// and all elements in $A'[res+1..r]$ are $> A[r]$
Partition (A,p,r){
 $x = A[r]$;
 $i = p-1$;
 for ($j=p$; $j<res-1$; $j++$){
 if ($A[j] \leq x$){
 $i++$;
 exchange $A[i]$ and $A[j]$;
 }
 }
 exchange $A[i+1]$ and $A[r]$;
 return $i+1$;
Correctness

Basic idea: The array is partitioned into four regions, x is the pivot

- Region 1: Region that is less than or equal to x (between p and i)
- Region 2: Region that is greater than x (between $i + 1$ and $j - 1$)
- Region 3: Unprocessed region (between j and $r - 1$)
- Region 4: Region that contains x only (r)

Region 1 and 2 are growing and Region 3 is shrinking

Loop Invariant

At the beginning of each iteration of the for loop, for any index k:

1. If $p \leq k \leq i$ then $A[k] \leq x$
2. If $i + 1 \leq k \leq j - 1$ then $A[k] > x$
3. If $k = r$ then $A[k] = x$

Example

- Consider the array (2 6 4 1 5 3)

At-Home Exercise

- Show Initialization for this loop invariant
- Show Termination for this loop invariant
- Show Maintenance for this loop invariant:
 - Show Maintenance when $A[j] > x$
 - Show Maintenance when $A[j] \leq x$
Analysis

- The function Partition takes $O(n)$ time. Why?
- Q: What is the runtime of Quicksort?
- A: It depends on the size of the two lists in the recursive calls

Best Case

- In the best case, the partition always splits the original list into two lists of half the size
- Then we have the recurrence $T(n) = 2T(n/2) + \Theta(n)$
- This is the same recurrence as for mergesort and its solution is $T(n) = O(n \log n)$

Worst Case

- In the worst case, the partition always splits the original list into a singleton element and the remaining list
- Then we have the recurrence $T(n) = T(n-1) + T(1) + \Theta(n)$, which is the same as $T(n) = T(n-1) + \Theta(n)$
- The solution to this recurrence is $T(n) = O(n^2)$. Why?

Average Case Intuition

- Even if the recurrence tree is somewhat unbalanced, Quicksort does well
- Imagine we always have a 9-to-1 split
- Then we get the recurrence $T(n) \leq T(9n/10) + T(n/10) + cn$
- Solving this recurrence (with annihilators or recursion tree) gives $T(n) = \Theta(n \log n)$
Wrap Up

• Take away: Both the worst case, best case, and average case analysis of algorithms can be important.
• You will have a hw problem on the “average case intuition” for deterministic quicksort
• (Note: A solution to the in-class exercise is on page 147 of the text)

Randomized Quick-Sort

• We’d like to ensure that we get reasonably good splits reasonably quickly
• Q: How do we ensure that we “usually” get good splits? How can we ensure this even for worst case inputs?
• A: We use randomization.

R-Partition

//PRE: A[p..r] is the array to be partitioned, p>=1 and r <= size of A
//POST: Let A' be the array A after the function is run. Then
// A'[p..r] contains the same elements as A[p..r]. Further,
// all elements in A'[p..res-1] are <= A[i], A'[res] = A[i],
// and all elements in A'[res+1..r] are > A[i], where i is
// a random number between p and r.
R-Partition (A,p,r){
 i = Random(p,r);
 exchange A[r] and A[i];
 return Partition(A,p,r);
}

Randomized Quicksort

//PRE: A is the array to be sorted, p>=1, and r is <= the size of A
//POST: A[p..r] is in sorted order
R-Quicksort (A,p,r){
 if (p<r){
 q = R-Partition (A,p,r);
 R-Quicksort (A,p,q-1);
 R-Quicksort (A,q+1,r);
 }
}
Analysis

- R-Quicksort is a randomized algorithm
- The run time is a random variable
- We'd like to analyze the expected run time of R-Quicksort
- To do this, we first need to learn some basic probability theory.

Probability Definitions

(from Appendix C.3)

- A random variable is a variable that takes on one of several values, each with some probability. (Example: if X is the outcome of the role of a die, X is a random variable)
- The expected value of a random variable, X is defined as:
 \[E(X) = \sum_x x \cdot P(X = x) \]
 (Example if X is the outcome of the role of a three sided die,
 \[E(X) = 1 \cdot (1/3) + 2 \cdot (1/3) + 3 \cdot (1/3) = 2 \]

- An Indicator Random Variable associated with event A is defined as:
 - \(I(A) = 1 \) if A occurs
 - \(I(A) = 0 \) if A does not occur
- Example: Let A be the event that the role of a die comes up 2. Then I(A) is 1 if the die comes up 2 and 0 otherwise.
Linearity of Expectation

- Let X and Y be two random variables
- Then $E(X + Y) = E(X) + E(Y)$
- (Holds even if X and Y are not independent.)

- More generally, let X_1, X_2, \ldots, X_n be n random variables
- Then
 \[
 E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i)
 \]

Example

- For $1 \leq i \leq n$, let X_i be the outcome of the i-th role of three-sided die
- Then
 \[
 E\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} E(X_i) = 2n
 \]

Example

- Indicator Random Variables and Linearity of Expectation used together are a very powerful tool
- The “Birthday Paradox” illustrates this point
- To analyze the run time of quicksort, we will also use indicator r.v.’s and linearity of expectation (analysis will be similar to “birthday paradox” problem)

“Birthday Paradox”

- Assume there are k people in a room, and n days in a year
- Assume that each of these k people is born on a day chosen uniformly at random from the n days
- Q: What is the expected number of pairs of individuals that have the same birthday?
- We can use indicator random variables and linearity of expectation to compute this
Analysis

- For all $1 \leq i < j \leq k$, let $X_{i,j}$ be an indicator random variable defined such that:
 - $X_{i,j} = 1$ if person i and person j have the same birthday
 - $X_{i,j} = 0$ otherwise
- Note that for all i, j,
 $$E(X_{i,j}) = P(\text{person } i \text{ and } j \text{ have same birthday}) = \frac{1}{n}$$

Reality Check

- Thus, if $k(k-1) \geq 2n$, expected number of pairs of people with same birthday is at least 1
- Thus if have at least $\sqrt{2n} + 1$ people in the room, can expect to have at least two with same birthday
- For $n = 365$, if $k = 28$, expected number of pairs with same birthday is 1.04
In-Class Exercise

- Assume there are k people in a room, and n days in a year
- Assume that each of these k people is born on a day chosen uniformly at random from the n days
- Let X be the number of groups of three people who all have the same birthday. What is $E(X)$?
- Let $X_{i,j,k}$ be an indicator r.v. which is 1 if people $i, j,$ and k have the same birthday and 0 otherwise

Q1: Write the expected value of X as a function of the $X_{i,j,k}$ (use linearity of expectation)
Q2: What is $E(X_{i,j,k})$?
Q3: What is the total number of groups of three people out of k?
Q4: What is $E(X)$?