CS 491/591 Blockchains, HW2

Prof. Jared Saia, University of New Mexico

Note some of the problems here are based on problems from our textbook

1. Birthday Attack. Let H be an ideal hash function with range [0,2") .
H is ideal in that the first time H(x) is computed for a value z, the
result is distributed independently and uniformly at random among all
values in the range. Trivially, we can compute 2" + 1 different values
of H to guarantee that we find a collision. This takes only O(1) space.

(a)

(d)

What if you have O(2"/2) space? Can you take o(2") expected
time to get a collision? Hint: Birthday paradox. You may also
find useful the fact that 1 —x < e™* (this follows from the Taylor
expansion of e*).

What if you have 2% space for some value 27 What is the best
expected time algorithm you can get with that much space?

If you can find values = and y such that © # y and H(x) =
H(y), what type of attack can you run on Bitcoin? Maximize the
monetary reward of your attack :) Note: Finding two input values
that collide is not the same as finding a value z that collides with
a specific target value t (i.e. H(z) = H(t)).

Hard: Is there an attack where the product of time and space
complexity is o(2")?

2. In the following, you can use <data> as a shorthand to represent data
values pushed onto the stack. You can also use non-standard trans-
actions and op codes that are currently disabled. For a reference see
https://en.bitcoin.it/wiki/Script

(a)

Write a Bitcoin ScriptPubKey script for a transaction that can be
redeemed by anyone who supplies a square root of 1681. (Don’t
include the square root in your script - you're paying someone to
compute it for you. Your script should just check the supplied
answer)


https://en.bitcoin.it/wiki/Script

(b) Write a ScriptSig script to redeem your transaction

(c) Sketch how (in theory) you might create a ScriptPubKey script
that can be redeemed by anyone factoring a RSA factoring chal-
lenge, i.e. finding the factors of a very large number. Are there
additional op commands you might need to write your script?

3. Imagine that Alice and Bob are entities with known names (i.e. public

keys) in Bitcoin. For example, Alice is a bank (like Mt Gox) and Bob
represents a privately-held company. Alice wants to purchase Bob’s
company, 1% of the company for 1 bitcoin, over a 100 day period. Alice
and Bob don’t want anyone to learn about the purchase plan until it
has been fully completed (for example, so that competitors don’t learn
about the purchase beforehand). Also, they do not want to create or
use any additional IDs - all bitcoins can only be transferred from Alice’s
account to Bobs, this protects against double-spend attacks because
of the potential damage to their public reputations.
Explain exactly how they perform this process without leaking any
information to the blockchain about the purchase. Ensure that if Alice
backs out after buying say just % of the company over x days, that
Bob can get x bitcoins transferred to him. And ensure that if Bob
tries to walk away without transferring any percentage of the company
that Alice does not lose any of her bitcoins. Hint: Review Lecture 3
“Mechanics”.

4. Your boss suggests that the message sender should add a round num-
ber to each message of the Dolev-Strong flooding algorithm. Then
processes in round r should wait to receive at least n —t “round r”
messages before completing that round, where n is the total number
of processes and t is the maximum number of faults. Your boss claims
that this new algorithm will solve asynchronous consensus with t < n
crash faults.

Will this work? If so, prove it. In not, use the FLP impossibility theo-
rem to show precisely what the adversarial “scheduler/process crasher”
should do to keep this new algorithm from terminating correctly.

5. A signature scheme is said be malleable if for all messages m, a valid
signature o on m can be easily transformed into a different valid sig-
nature o’ on m. In this problem, you will show that malleable schemes
can lead to security problems in a cryptocurrency.

Consider a simple, newspaper-ad-based cryptocurrency blockchain,



where transactions look like this:

coiny < {Create 1 Bitcoin (serial#53401) for PKpyed} Sk, eq
coing <« {Pay H(coiny) to PK pavid}SK .
coing < {Pay H(coing) to PKpan}SKpayia

Here the notation mgx denotes a pair (m, o) where o is a signature
on m generated using the key SK. Every day the paper publishes a
classified ad that looks like: new-coins, H (yesterday’s ad).

Everyone using the system builds a database containing a hash of
every coin ever published, along with one bit saying if the coin has
already been spent. Nodes ignore blocks that contain a coin whose
hash is already in the database (a duplicate hash) or spending a coin
containing a spent or non-existent hash. For instance, an attempt to
republish coin; would fail, as would an attempt to re-spend coins such
as:

coing < {Pay H(coinz) to PK pavid}SK pavia

Nevertheless, malleable signatures introduce a vulnerability. Show
how someone might attack this system when we use malleable digi-
tal signatures. Hint: Assume a node may see a transaction before it
is published in the newspaper.



