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Abstract. In this paper we show some efficient and unconditionally
secure oblivious transfer reductions. Our main tool is a class of functions
that generalizes the Zig-zag functions, introduced by Brassard, Crepéau,
and Santha in [6]. We show necessary and sufficient conditions for the
existence of such generalized functions, and some characterizations in
terms of well known combinatorial structures. Moreover, we point out
an interesting relation between these functions and ramp secret sharing
schemes where each share is a single bit.
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1 Introduction

The oblivious transfer is a well known cryptographic primitive. Introduced by
Rabin in [24], and subsequently defined in different forms in [16,5], it has found
many applications in cryptographic studies and protocol design. One of the most
common forms in which the oblivious transfer is used is the following! [5]: Let
S, the Sender, and let R, the Receiver, be two players. Assume that & holds n
secrets of £ bits and R is interested in one of them, say the i-th one. An oblivious
transfer protocol enables R to receive the i-th secret out of the n S holds in such
a way that

- 8 does not know which of the n secrets R has received

- R does not receive any information on the other secrets S holds.
We will refer to such a protocol as to an (?)—OTZ. All the oblivious transfer
definitions [24, 16, 5] were shown to be equivalent [12,4,13, 6]. Moreover, Kilian,
in [21], showed that the oblivious transfer is complete; in other words, it can
be used to construct any other cryptographic protocol. Due to the importance

! Recently, it has been pointed out that Wiesner independently developed a similar
concept in 1970, unpublished until [27].



of the oblivious transfer many papers [6,12,11,13,14,22 23], assuming that an
(?)—OTZ is available, have been focusing on designing protocols that realize an
(T)—OTL, where N > n and L > /£, using in an efficient way the given (?)—OTZ.
Such kind of protocols are usually referred to as oblivious transfer reductions.

In [14], unconditionally secure oblivious transfer reductions have been stud-
ied. Lower bounds on the number of times an (?)—OTZ oblivious transfer protocol
must be called to realize an (JIT)—OTL one, as well as on the number of random
bits needed to implement such a reduction, have been proven. The bounds were
shown to be tight when the parameter L = ¢. Unfortunately, when L > ¢ the
trivial extension of the described protocol leaks some information. Actually, a
cheating receiver is able to obtain pieces of different secrets.

In this paper we focus our attention on unconditionally secure reductions of
(JIT)—OTL to (?)—OTZ . We show how to modify the protocol proposed in [14] in
order to avoid information leakage. To this aim, we investigate the properties
of a class of functions that generalizes the Zig-zag function class introduced by
Brassard, Crepéau, and Santha in [6] in order to reduce in an unconditionally
secure way (?)—OTZ to (?)—OTl. Using these generalized Zig-zag functions we
set up an unconditionally secure oblivious transfer reduction of (JD—OTL to
(?)—OTZ, which is optimal up to a small multiplicative constant with respect to
the number of invocations of the smaller oblivious transfer needed to implement
such a reduction [14].

Zig-zag functions have been deeply studied in the last years. The authors
of [6] showed that linear Zig-zag functions are equivalent to a special class of
codes, the self-intersecting codes [9]. Moreover, they described several efficient
methods to construct these codes. On the other hand, Stinson, in [25], found
bounds and combinatorial characterizations both for linear and for non-linear
Zig-zag functions. Applying techniques developed in [25,26], we show necessary
and sufficient conditions for the existence of generalized Zig-zag functions, and
some characterizations in terms of orthogonal arrays and large set of orthogonal
arrays as well.

Then, we show that the reduction presented in [14] can be viewed as a two-
stage process, and using a ramp secret sharing scheme [1] in the first stage, we
set up a reduction of (JIT)—OTL to (?)—OTZ, which is optimal with respect to the
number of invocations of the available (?)—OTZ, up to a factor 2.

Finally, we point out an interesting relation between generalized Zig-zags and
ramp secret sharing schemes where the size of each share is exactly one bit.

2 Oblivious Transfer

The following definitions were given by Brassard, Crepéau, and Santha in [6]
and were used, in a slightly simplified form? in [14]. We refer the reader to [6]
for more details.

2 The goal of that paper was to find out lower bounds and the awareness condition
does not influence them in any way



Assume that & and R hold two programs, S and R respectively, which specify
the computations to be performed by the players to achieve (T)—OTL. These
programs encapsulate, as black box, «deal (?)—OTZ. Hence, during the execution,
S and R are able to carry out many times unconditionally secure (?)—OTZ. In
order to model dishonest behaviours, where one of the player tries to obtain
unauthorized information from the other, we assume that a cheating S (resp.
R) holds a modified version of the program, denoted by S (resp. R).

Let [Pg, P1](a)(b) be the random variable representing the output obtained
by & and R when they execute together their own programs, P held by § and Py
held by R, with private inputs a and b, respectively. Moreover, let [Pg, P1]*(a)(b)
be the random variable that describes the total information acquired during
the execution of the protocol on input a and b, and let [Py, P1]%(a)(b) (resp.
[Po,P1]% (a)(b)) be the random variable obtained by restricting [Pg, P1]*(a)(b)
to S (resp. to R). These restrictions are the view each player has while running
the protocol.

Finally, let W be the set of all length N sequences of L-bit secrets, and,
for any w € W, let w; be the i-th secret of the sequence. Denoting by W the
random variable that represents the choice of an element in W, and by T the
random variable representing the choice of an index ¢ in T'= {1,..., N}, we can
define the conditions that an (JIT)—OTL oblivious transfer protocol must satisfy
as follows:

Definition 1. The pair of programs [S, R] is correct for (JD-OTL iof for each
w e W and for each i €T

P([S, R)(w) (7)) # (¢, wi)) = 0, (1)

and, for any program S, there exists a probabilistic program Sim such that, for
eachw e W and i1 €T

([S, R)(w)(3)|R accepts ) = ([S, R](Sim(w))(i)|R accepts ). (2)

Notice that condition (1) means that two honest players always complete
successfully the execution of the protocol. More precisely, R receives wr, the
secret in which he is interested, while § receives nothing. The output pair (e, w;),
where ¢ denotes the empty string, describes this situation. On the other hand,
condition (2), referred to as the awareness condition, means that, when R does
not abort, a dishonest & cannot induce on R’s output a distribution that he could
not induce by changing the input (Sim(w)) and being honest. As explained in
[6], this condition is necessary for future uses of the output of the protocol.

Assuming that both & and R are aware of the joint probability distribution
Pwr on W and T, the probability with which & chooses the secrets in W and R
chooses an index i € T', and using the mutual information® between two random
variables; the privacy property of (JD—OTL can be defined as follows:

® The reader is referred to Appendix A for the definition and some basic properties of
the concept of mutual information.



Definition 2. The pair of programs [S, R] is private for (JIT)-OTL iof for each
weW and i € T, for any program S

I(T;[S, R]5(w) ()W) =0, (3)
while, for any program R, there exists a random variable T = F(T) such that

These two conditions ensure that a dishonest & does not gain information
about R’s index; and a dishonest R infers at most one secret among the ones

held by §.

3 Unconditionally Secure Reductions

In the literature can be found many unconditionally secure reductions of more
“complex” OT to “simpler” ones [11,12,4,14]. The efficiency of such reductions
has been careful analyzed in [14]. Therein, the authors considered two types of
reductions: reductions for strong (JIT)—OTL, where condition (4) of Definition 2
holds, and reductions for weak (JIT)—OTL, where condition (4) is substituted by
the following condition:

for any program R and i € T, it holds that
I(W;[S, Rl (w) (7)) < L. (5)

Roughly speaking, in a weak reduction, a dishonest R can gain partial infor-
mation about several secrets, but at most I bits overall. Besides, they termed
natural reductions the reductions where the receiver R sends no messages to
the sender §. This automatically implies that condition (3) of Definition 2 is
satisfied. Using the above terminology, they showed the following lower bounds
on the number « of invocations the (JD—OTL protocol must do of the ideal (711)—
OT* sub-protocol, and on the number of random bits required to implement the
(Y)-0TE.

Theorem 1. [14] Any information-theoretical secure reduction of weak (JIT)-
OTL to (1)-OT" must have o > % A=

n—1

Theorem 2. [14] In any information-theoretic natural reduction of weak (Jf)-

o1 to (?)-OTK the sender must flip at least gév_;lnl random bits.

When L =/, the bounds are tight both for the strong and the weak case, since
they showed a protocol realizing (JIT)—OTZ where N > n which makes exactly

&=L invocations of the (7)-OT* and flips exactly giv_;l”l random bits [14].
However, for the case L > ¢, they gave a protocol (see Table 1), which is optimal
with respect to condition (5), but which does not meet condition (4). The idea is

simply to split each of the N secret strings in L /¢ pieces of £ bits, and to run the



Protocol weakly reducing (le)—OTL (with L > {) to (?)—OT".
Assume that £|L.

- Let w = wi,...,wy be the length N sequence of secrets & holds. For each
1=1,..., N, w; is a string of L bits.
L
- Split the strings into % pieces. More precisely, let w; = w}, ..., w;, where, w! €
{0,1}, foreach j =1,..., %.
- For 53 = 1,...,%, execute an (JY)—OTZ oblivious transfer of the j-th piece of

w = wi,...,wn. In other words, compute

(ZI])—OTZ on (w],...,wy)

where the (JY)—OTZ is the reduction of (JY)—OTZ to (T)—OTZ described in [14].

Table 1. Basic protocol for a weak reduction

available (T)—OTZ, optimal with respect to the use of the (?)—OTZ black box,
exactly % times.

An honest R always obtains the secret in which he 1s interested in, recovering
the “right” pieces at each execution. On the other hand, a cheating R is able to
recover % pieces of possibly different secrets among w = wq, ..., wy. We would
like to modify this basic construction in order to achieve condition (4) without
losing too much in efficiency.

Brassard, Crepéau, and Sdntha solved a similar problem in [6]. They stud-
ied how to reduce @)—OTZ to @)—OT1 in an information theoretic secure way.
Starting from the observation that trivial serial executions of £ (?)—OT1 oblivi-
ous transfer, one for each bit of the two secret strings wy and wy, didn’t work,
they pursued the idea of finding a function f where, given zy and z; such that
flzo) = wo and f(z1) = wy, from two disjoint subsets of bits of zy and #; it is
possible to gain information on at most one of wy and wy. Using such a (public)
function, the reduction would have been simple to implement (see Table 2).

The property of f ensures that an honest receiver is always able to recover
one of the secrets, while a dishonest receiver can obtain information on at most
one of the secrets. They called such functions Zig-zag functions.

Notice that we have to solve a very close problem: in our scenario, a cheating
receiver i1s able to obtain partial information about many secrets. Our aim is
to find out a class of functions where disjoint subsets of strings xi, s, ... give
information about at most one of the secrets wq, wo, ...



Protocol strongly reducing (f)—OT‘) to (f)—OT1

- 8 picks random zq, z1 € {0, 1}" such that f(z¢) = wo and flz1) =w
- Fori=1,...,n, 8 performs a (?)—OTl on the pair (zg,z})
- R recovers wg or wy by computing f(zo) or f(z1).

Table 2. Protocol for two secrets of £ bits

4 Generalized Zig-zag Functions

Let X = GF(q), and let X" = {(21,...,2,) 1 2; € X, for 1 < i < n}. More-
over, for each I = {iy,..., 4} C{L,...,n}, denote by el = (z,. .., i) the
subsequence of z € X indexed by I. Finally, let X7 be the set of all possible
subsequences ! for a given I.

A function is unbiased with respect to a subset [ if the knowledge of the
value of z! does not give any information about f(z). More formally, we have
the following definition

Definition 3. Suppose that f: X" — X™, where n > m. Let I C {1,... n}.
We say that f is unbiased with respect to I if, for all possible choices of x! €
X1, and for every (y1,...,ym) € X™, there are eractly ¢"~ ™=l choices for
wlbeo? N sych that fx, ... 20) = (Y1, Ym)-

This concept has been introduced in [6]. Actually, the form in which it is
stated here is the same as [25]. Since we are going to follow the same approach
applied in [25] to study the properties of linear and nonlinear Zig-zag functions,
we prefer this definition. The definition of Zig-zag functions relies on the unbiased

property.

Definition 4. A function f : X" — X™ s said to be a Zig-zag function if,
for every I C {1,...,n}, f is unbiased with respect to at least one of I and

{1,...,n}\ 1.

We would like some “generalized” Zig-zag property, holding for different dis-
joint subsets of indices. Roughly speaking, a generalized Zig-zag function should
be unbiased with respect to at least s — 1 of the subsets Iy,...,I; into which
{1,...,n} is partitioned (for all possible partitions). More formally, we can state
the following

Definition 5. Let s be an integer such that 2 < s < n. A function f : X" — X™
1s sard to be an s-Zig-zag function if, for every set of s subsets I,..., Iy C
{1,...,n}, such that U;I; = {1,...,n}, and I; N 1; = 0 if i # j, f is unbiased
with respect to at least s — 1 of I, ..., I;.




In an s-Zig-zag function, if R collects information about s z;’s, for some s,
then he can get information on at most one w;. If the above property is satisfied
for every 2 < s < n, then we say that f is fully Zig-zag (see Appendix B for
an example of such a function). Fully Zig-zag functions enable us to apply the
same approach developed in [6] in order to substitute the real secrets w; with
some pre-images z; of w;. The generalized property of the function ensures the
privacy of the transfer.

Note: The functions f : X — X we are looking for must be efficient to
compute. Moreover, there must exist an efficient procedure to compute a random
pre-image x € f~1(y), for each y € X™.

4.1 Zig-zag and Fully Zig-zag Functions.

We briefly review some definitions and known results about Zig-zag. A Zig-zag
(resp. s-Zig-zag, fully Zig-zag) function is said to be linear if there exists an mxn
matrix M with entries from GF(q) such that f(z) = M7 for all z € GF(q)".

The following results have been shown in [25] and are recalled here since they
will be used in the following subsection. The next lemma shows an upper bound
on the size of the set of index I with respect to a function can be unbiased.

Lemma 1. [25]If f : X" — X™ is unbiased with respect to I, then |I| < n—m.

As a consequence, it is possible to show a lower bound on the size n of the
domain of the function, given the size m of the codomain.

Lemma 2. [25] If [ : X" — X™ is a Zig-zag function, then n > 2m — 1.

The following theorem establishes that a Zig-zag function is unbiased with
respect to all the subsets of size m — 1.

Theorem 3. [25] If f : X"™ — X™ is a Zig-zag function, then f is unbiased
with respect to I for all I such that |I| =m — 1.

Moreover, notice that it is not difficult to prove the following result

Lemma 3. If f : X" — X™ 1is unbiased with respect to I, then f is unbiased
with respect to all I C 1.

Using the above results, we can prove our main result of this section: an
equivalence between certain fully Zig-zag functions and Zig-zag functions.

Theorem 4. Let n > 2m—1. Then f: X" — X™ s a fully Zig-zag function if
and only if f 1s a Zig-zag function.

Proof. We give the proof for n = 2m — 1. The if part is straightforward. Indeed,
if f is fully Zig-zag, then for each partition Iy, ... I of {1,... n} fis unbiased
with respect to at least s — 1 subsets out of the s in the partition. Hence, it is
unbiased with respect to at least 1 subset out of the 2 for any possible bipartition
of {1,...,n}. Therefore, f is Zig-zag.

Assume now that f is Zig-zag. Hence, by definition, for each I C {1,...,n},
/ is unbiased with respect to at least one of I and {1,... n}\ I.

Let I, ..., I be a partition of {1,...,n}. We can consider two cases.



a) There exists a subset I; of the partition such that |I;] > n — m. Consider
this subset. Since f is Zig-zag, by Lemma 1, f is unbiased with respect to
{1,...,n}\ L. But {1,...,n}\ I; = Uj2I;. Hence, applying Lemma 3, we
can conclude that f is unbiased with respect to all [}, for j # ¢.

b) For each i =1,...,s, |I;] < n — m. Notice that, since n = 2m — 1,

|IZ|§n—m¢>|IZ|§2m—1—m¢>|[l|§m—1

Since f i1s a Zig-zag function, applying Theorem 3, we can say that f is

unbiased with respect to all I; : |I;| = m — 1. Therefore, by Lemma 3, we
can conclude that f is unbiased with respect to all of Iy, ..., .
Therefore, f is fully Zig-zag. a

The proof for n > 2m — 1 is similar. Therefore, we can conclude saying that
Zig-zag and fully Zig-zag definitions define the same class of functions. Therefore,
the known constructions for Zig-zag functions enable us to improve the protocol
described in Table 1 by substituting the secrets with the pre-images of a Zig-
zag functions, as done in the protocol described in Table 2 for two secrets. A
complete description of our protocol can be found in Table 3. Moreover, since
both in [6] and in [25], has been shown that for each m there exist functions
f X" = X, where n = ©(m) and the asymptotic notation hides a small
constant, the modified protocol is still efficient and optimal with respect to the
bound obtained in [14] up to a small multiplicative constant .

Protocol strongly reducing (JY)—OTL to (?)—OT‘)

Let f: X — X* be a fully Zig-zag function such that £|P.

- 8 picks random zo, 21, ..., vn—1 € {0, 1}F such that, fori =0,..., N—1, f(z;) =

w;.
- & performs the protocol described in Table 1, using zo,z1,...,2n5—1 instead of
the real secrets wo, ..., wy_1.

- R recovers z;, and computes w; = f(x;).

Table 3. General protocol, depending on f.

* After the submission of this extended abstract to the conference, we found out that
Dodis and Micali, working on the journal version of the paper presented at Eurocrypt
’99, have independently obtained the same reduction, which will appear in the full
version of their paper.



4.2 On the Existence of s-Zig-zags.

A question coming up to mind now is the following: Zig-zag functions are equiva-
lent to fully Zig-zag functions. But these functions, according to Lemma 2, exist
only if n > 2m — 1. Do s-Zig-zag functions exist when n < 2m — 17 The example
reported in Appendix C shows that the answer is again affirmative. It is inter-
esting to investigate some necessary and sufficient conditions for the existence
of such generalized functions. The following lemma extends Lemma 2:

Lemma 4. If an s-Zig-zag function f: X" — X exists, then

2m — s+ 2, if n and s are both odd or both even
n> .
=1 2m—s+1, otherwise.

Proof. Notice that, by definition, f must be unbiased with respect to at least
s — 1 subsets of each possible s-partition. It is not difficult to check that the
worst case we have to consider is when a partition has s — 2 subsets of size 1
and two subsets of essentially the same size. Therefore, f must be unbiased with
respect to at least one of the two “big” subsets. Hence, applying Lemma 1, it
follows that

P (6)
The result follows by simple algebra. a

An interesting relation between s-Zig-zag and ¢-Zig-zag, where ¢ > s, is stated
by the following lemma, whose proof can be obtained essentially noticing that a
t-partition is a refinement of an s-partition.

Lemma 5. If f: X? — X" s s-Zig-zag, then f s t-Zig-zag for every s <t <
n.

4.3 A Combinatorial Characterization.

Let ¢ be an integer such that 1 < ¢t < k and v > 2. An orthogonal array
OAx(t, k,v) is a Av® x k array A of v symbols, such that within any ¢ columns of
A, every possible t-tuple of symbols occurs in exactly A rows of A. An orthogonal
array 1s simple if it does not contain two identical rows. A large set of orthogonal
arrays OAy(t, k, v), denoted LOA(, k, v), is a set of v*~¢ /X simple O A, (¢, k, v),
such that every possible k-tuple occurs as a row in exactly one of the orthogonal
arrays in the set (see [20] for the theory and applications of these structures).

Theorem 5. If f : X — X™ s an s-Zig-zag function where n and s have
different parity, and m > [ 5| + L%J then f is unbiased with respect to all the
subsets of size Lﬂg;zlj



Proof. Notice that, our assumptions imply [n—(;—Z)] > Ln—(;—z) |. By definition,

/ is unbiased with respect to at least s—1 subsets of each s-partition of {1, ..., n}.

Suppose there exists a subset I; such that |I;| = L#J with respect to f is

biased. Then, 1t would be possible to define an s-partition having s — 2 subsets
of size 1, the subset I;, and a subset R having size

Rl=n—(s—2) - 22022y o prolo?)

Since f is biased with respect to I;, then f must be unbiased with respect to
R. This is possible only if

(s—2 (s—2
L R = S L )
Since [L] =[5] - Lszz the above inequality is satisfied only if m <
2]+ [52]. But m > [ 2] + [552] and, hence, we have a contradiction. O

The following theorem establishes a necessary and sufficient condition for the
existence of certain s-Zig-zag functions.

Theorem 6. An s-Zig-zag function f : X? — X, where n and s have different

parity, and m > | 5|+ LSEZJ exists if and only if a large set of orthogonal arrays

LOAA(LML”,(]) with A = ¢" =™~ L= epists.

Proof. The necessity of the condition derives from Theorem 5, analyzing the
arrays containing the pre-images of f, as done in [25]. The sufficiency can be
proved as follows: label each of the ¢ arrays of the large set with a different
element of y € X™. Denote such array with A,. Then, define a function f :
X" — X™ as

flz,...,zn) =y <= (x1,...,2,) € Ay.

The properties of the arrays and the condition m > | %] + |52 assure that f

1s s-Zig-zag. a

On the other hand, using the same proof technique, it 1s possible to show a
sufficient condition for the existence of an s-Zig-zag for any n and 2 < s < n.
More precisely, we can state the following

Theorem 7. If a large set of orthogonal arrays LOAA([#J M, q) with A =
. e (s=

n—m-—|

2| erists, then an s-Zig-zag function exists.

5 Towards a General Reduction

The protocol described before can be conceptually divided in two phases: a first
phase in which z; is split into several pieces and R needs all the pieces to retrieve
z;; and a second phase where, once having obtained z;, R recovers the secret
by computing y; = f(x;) for some function f. Since each piece gives partial



knowledge of z;, f needs to hide the value of y; according to the definition of
a correct and private reduction (i.e., the Zig-zag property). In this section, we
show that using in the first phase an appropriate ramp secret sharing scheme [1]
(see Appendix D for a brief review of the definition and some basic properties) to
share z; then, in the second phase the function f needs weaker requirements than
the Zig-zag property. In this case, the pieces that R recovers from each transfer
are not substrings of the value z; he needs to compute the real secret y; = f(z;),
but shares that he has to combine according to the given ramp scheme in order
to recover z;.

Actually, notice that the splitting of the strings can be seen as a sharing
according to a (0, %, £)-RS, where p is |z;| and £ is the size of each share/piece.
The questions therefore are: is it possible to design an overall better protocol,
using in the first phase some non trivial ramp scheme to share ;. Does there
exist a trade-off between what we pay in the first phase and what we pay in
the second phase? Using a generic (¢1,t2,n)-RS, what properties does f need
to satisfy in order to hide y; from partial knowledge of z; as required by our
problem? It is not difficult to check that the condition f needs is the following.

Definition 6. A function f : X — Y realizes an unconditionally secure obliv-
ious transfer reduction if and only if, for each set of shares {x1,...,x,} for a
secret ¥ € X generated by a given (t1,t2,n)-RS, for every sequence of subsets
I, ... L, C{l,...,n}, such that U;I; = {1,...,n}, and ;N 1; =0 if i # j, it
holds that

HY|X;,) = H(Y)

for at least s — 1 of I1,...,1I;.

The definition means that at most one subset of shares can give information
about f(z).

It is easy to see that, when the ramp secret sharing scheme used in the
first phase of the protocol is the trivial (0, p, p)-RS (shares/pieces of one bit),
Definition 6 is equivalent to fully Zig-zag functions.

An Almost Optimal Reduction. Using a (%, n,n)-RS it is immediate to see that,
to acquire information on z;, the adversary needs at least 3 + 1 shares. Hence,
recovering partial information on one secret rules out the possibility of recov-
ering partial information on another secret. Notice that with such a scheme, if
each secret has size p and ¢ divides p, the bound on the size of the shares (see
Appendix D) implies n > 27” (number of invocations of the given (T)—OTZ). An
implementation meeting the bound for several values of p and ¢ can be set up
using, for example, the protocol described in [17]. In this case the function f
used in the second phase can be simply the identity function!

6 Ramp Secret Sharing Schemes with Shares of One Bit

Fully Zig-zag, s-Zig-zag and Zig-zag functions give rise to ramp secret sharing
schemes with shares of one bit. The idea is the following: the dealer, given one



of these functions, say f : X” — X", chooses a secret y € X™ and computes a
random pre-image € f~1(y). Then, he distributes the secret among the set of
n participants giving, as a share, a single bit of the pre-image « to each of them.
It is immediate to see that

- some subsets of participants do not gain any information about the secret,
even if they pool together their shares. These subsets are the subsets of
{1,...,n} with respect to the function f is unbiased.

- some subsets of participants are able to recover partial information about
the secret. These are the subsets of {1,...,n} with respect to f is biased

- all the participants are able to recover the whole secret.

The idea of such constructions was recently described in [8] (see Remark 9) as
an application of /~AONT transforms. In that construction, however, the dealer
distributes among the participants the bits of the image of the secret while we
distribute the bits of a pre-image of the secret.

7 Conclusions

In this paper we have shown how to achieve efficient unconditionally secure re-
ductions of (JD—OTL to (?)—OTZ, proving that Zig-zag functions can be used to
reduce (JD—OTL to (?)—OTZ for each N > n and L > /. Finally, we have studied
a generalization of these functions, identifying a combinatorial characterization
and a relation with ramp schemes with shares of one bit. Some interesting ques-
tions arise from this study. To name a few:

— The constructions presented before are almost optimal but do not meet the
bounds of Theorems 1 and 2 by equality. Hence, the question of how to reach
(if it is possible) these bounds is still open.

— Do eryptographic applications of s-Zig-zag exist? We have pointed out the
interesting relation with efficient ramp schemes, where each share is a single
bit. Is it possible to say more?

— Linear Zig-zag are equivalent to self-intersecting codes. Is there any charac-
terization in terms of codes for s-Zig-zag functions? And what about some
efficient constructions? Is it possible, along the same line of [6], to set up
any deterministic or probabilistic method?
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A Information Theory Elements

This appendix briefly recalls some elements of information theory (the reader is
referred to [10] for details).

Let X be a random variable taking values on a set X according to a proba-
bility distribution {Px(z)}zex. The entropy of X, denoted by H(X), is defined
as

H(X)=-)_ Px(v)log Px(z),

where the logarithm is to the base 2. The entropy satisfies
0 < H(X) < log | X,

where H(X) = 0 if and only if there exists zg € X such that Pr(X = xg) = 1;
whereas, H(X) = log|X| if and only if Pr(X = z) = 1/|X]|, for all z € X. The
entropy of a random variable is usually interpreted as

— a measure of the equidistribution of the random variable
— a measure of the amount of information given on average by the random
variable

Given two random variables X and Y taking values on sets X and Y, re-
spectively, according to the joint probability distribution {Pxvy(z,y)}eex yev
on their cartesian product, the conditional entropy H(X|Y) is defined as

HX|Y) = - Z Z Py (y) Px)v (x]y) log Px)y (z]y).

It is easy to see that

H(X|Y) > 0.



with equality if and only if X is a function of Y. The conditional entropy is a
measure of the amount of information that X still has, once given Y.

The mutual information between X and Y is given by
1(X;Y) = H(X) - HX]Y),
and 1t enjoys the following properties,
I(X;Y) = I(Y;X), and I(X;Y) > 0.

The mutual information is a measure of the common information between X
and Y.

B A Fully Zig-zag Function

In this section, we show an example of a fully Zig-zag function. Let X = GF(2),
and let f: X% — X3 be the function defined by f(z) = xtMT where

101100
M=1]110010
011001

To prove that f is fully Zig-zag it is necessary to show that, for any 1 < s < 6,
for each partition of {1,...,6} into s parts, f is unbiased with respect to at least
s—1 of them. An easy proof can be obtained using the following theorem, which
can be found in [25].

Theorem 8. Let M be a generating matriz for an [n,m] g-ary code, C, and let
H be a parity-check matriz for C. The function f(z) = M7 is unbiased with
respect to I C {1, ...,n} if and only if the columns of H indexed by I are linearly
independent.

The parity-check matrix H for the generating matrix M is

100110
H=1(010011
001101

Applying the above theorem, it is not difficult to see that f is unbiased with
respect to

a) any subset of size 1.
b) any subset of size 2.
c) any subset of size 3, except {1,2,5},{1,3,4},{2,3,6}, and {4,5,6}.

Therefore, for any 2 < s < 6, and for any s-partition, f i1s unbiased with
respect to at least s — 1 subsets of the s subsets.



C An Example of an s-Zig-zag

In this Appendix we show an example of a 3-Zig-zag function (where n < 2m—1).
Let X = GF(2), and let f: X* — X3 be the function defined by f(z) = tM7T
where

1001
M=10101
0011

In this case, the parity-check matrix H for the generating matrix M is simply
H = [1 11 1]

Applying Theorem 8, it is easy to see that f is unbiased with respect to each
subset of size 1. Since any 3-partition contains 2 subsets of size 1 and a subset
of size 2, it follows that f is unbiased with respect to exactly 2 subsets.

Hence, s-Zig-zag functions can exist where Zig-zag functions and fully Zig-zag
functions cannot exist.

D Ramp Secret Sharing Schemes

A ramp secret sharing schemes ((¢1,%2, n)-RS, for short) is a protocol by means
of which a dealer distributes a secret s among a set of n participants P in such a
way that subsets of P of size greater than or equal to ¢; can reconstruct the value
of s, any subset of P of size less than or equal to ¢; cannot determine anything
about the value of the secret, while a subset of size t; <t < t5 can recover some
information about the secret [1]. Using information theory, the three properties
of a (linear) (f1,%2,n)-RS can be stated as follows. Assuming that P denotes
both a subset of participants and the set of shares these participants receive
from the dealer to share a secret s € S| and denoting the corresponding random
variables in bold, it holds

— Any subset of participants of size less than or equal to t1 has no informa-
tion on the secret value: Formally, for each subset P € P of size |P| < iy,
H(S|P)= H(S).

— Any subsel of participants of size t1 < |P| < ts has some information on
the secret value: Formally, for each subset P € P of size 1 < |P| < {a,

H(S|P)= = f(s).

Tt
— Any subset 2of })articipants of size greater than t; can compute the whole

secret: Formally, for each subset P € P of size |P| > t2, H(S|P) = 0.

In a (t1,t2,n)-RS, the size of each share must be greater than or equal to

S) (see [7,19]).

to—ty




