
Scalable and Secure
Computation Among Strangers:

Message-Competitive
Byzantine Protocols

Jared Saia

Joint with: John Augustine, Valerie King, Anisur Rahaman Molla, and
Gopal Pandurangan

Permissionless Networks

Permissionless networks are large; nodes
join and leave at will

Nodes are known by self-generated IDs

Adversarial (Byzantine) IDs common

Goal: Solve coordination problems with
sub-quadratic messages

Scalability
Recent work* ensures solutions to Byzantine
agreement/leader election where good
nodes send messages total

Assume model: Each good node knows
IDs of all neighbors.

How can we extend this result to churn?

One step is to extend it to model

Õ(n)

KT1

KT0

Scalability
Recent work* ensures solutions to Byzantine
agreement/leader election where good
nodes send messages total

Assume model: Each good node knows
IDs of all neighbors.

How can we extend this result to churn?

One step is to extend it to model

Õ(n)

KT1

KT0

*Braud-Santoni, et al. PODC ‘13

 ModelKT0
Nodes don’t know their neighbors a priori

But they do learn a neighbors ID upon
receiving a message from it

Can convert to :

Initial step where each node communicates
with all neighbors solely to learn IDs

But this is messages

KT0 KT1

Θ(n2)

Can we design Byzantine agreement/leader
election protocols that require sub-quadratic
messages in ?KT0

Our Model

Adversary is static, rushing and
computationally-unbounded.

n nodes have distinct IDs in . Byzantine
nodes choose their IDs.

Synchronous, fully-connected model

[1,nk]

KT0

Upper Bound
Theorem: Our algorithm solves Byzantine agreement,
leader and committee election in with:

 latency

 expected messages

KT0

O(polylog(n))

O((T + n)log n)

T = min(n2, # bits sent by adversary)

Upper Bound
Theorem: Our algorithm solves Byzantine agreement,
leader and committee election in with:

 latency

 expected messages

KT0

O(polylog(n))

O((T + n)log n)

T = min(n2, # bits sent by adversary)

Handles fraction of Byzantine faults

Succeeds with probability for any fixed, positive c

< 1/4

1 −
1
nc

Upper Bound
Theorem: Our algorithm solves Byzantine agreement,
leader and committee election in with:

 latency

 expected messages

KT0

O(polylog(n))

O((T + n)log n)

T = min(n2, # bits sent by adversary)

Handles fraction of Byzantine faults

Succeeds with probability for any fixed, positive c

< 1/4

1 −
1
nc

Holds even in CONGEST

Talking to Strangers

In fact, our algorithm only writes to unknown
IDs (strangers) via two primitives:

(1) Random stranger

(2) All strangers

LB for polylog(n) rounds

LB for polylog(n) rounds
 messages needed when bad nodes

[Hadzilacos and Halpern, 91]
Ω(nt) t ≤ n

LB for polylog(n) rounds
 messages needed when bad nodes

[Hadzilacos and Halpern, 91]
Ω(nt) t ≤ n

In CONGEST, bits can be sent by
Byzantine nodes in poylog(n) rounds

Õ(n)

LB for polylog(n) rounds
 messages needed when bad nodes

[Hadzilacos and Halpern, 91]
Ω(nt) t ≤ n

In CONGEST, bits can be sent by
Byzantine nodes in poylog(n) rounds

Õ(n)

Thus, T = Õ(tn)

LB for polylog(n) rounds
 messages needed when bad nodes

[Hadzilacos and Halpern, 91]
Ω(nt) t ≤ n

In CONGEST, bits can be sent by
Byzantine nodes in poylog(n) rounds

Õ(n)

Thus, T = Õ(tn)

So messages needed for polylog(n) round
algorithms in CONGEST

Ω̃(T)

LB for polylog(n) rounds
 messages needed when bad nodes

[Hadzilacos and Halpern, 91]
Ω(nt) t ≤ n

In CONGEST, bits can be sent by
Byzantine nodes in poylog(n) rounds

Õ(n)

Thus, T = Õ(tn)

So messages needed for polylog(n) round
algorithms in CONGEST

Ω̃(T)

Even for algs succeeding whp

LB for polylog(n) rounds
 messages needed when bad nodes

[Hadzilacos and Halpern, 91]
Ω(nt) t ≤ n

In CONGEST, bits can be sent by
Byzantine nodes in poylog(n) rounds

Õ(n)

Thus, T = Õ(tn)

So messages needed for polylog(n) round
algorithms in CONGEST

Ω̃(T)

Even for algs succeeding whp
Our alg optimal up to log terms

LB for Deterministic

LB for Deterministic

Theorem: For bits sent by Byzantine
nodes, any deterministic algorithm sends
total bits. (also for)

T = O(n2)
Ω(T)

KT1

LB for Deterministic

Theorem: For bits sent by Byzantine
nodes, any deterministic algorithm sends
total bits. (also for)

T = O(n2)
Ω(T)

KT1

Also show that if for , then
any Las Vegas algorithm sends bits in
expectation

T = n1+α α ∈ (0,1]
Ω(n1+α/2)

Upper Bound

Upper Bound

This talk: Byzantine agreement only
Paper: Leader and committee election

Our Algorithm

1. Each ID becomes active with probability

2. Active IDs try to solve Byzantine agreement

3. If fail, then , goto step 1

p ← (log n)/n

p

p ← 2p

Our Algorithm

1. Each ID becomes active with probability

2. Active IDs try to solve Byzantine agreement

3. If fail, then , goto step 1

p ← (log n)/n

p

p ← 2p

Our Algorithm

1. Each ID becomes active with probability

2. Active IDs try to solve Byzantine agreement

3. If fail, then , goto step 1

p ← (log n)/n

p

p ← 2p

Implicit Agreement
Success: fraction of good IDs decide on
correct bit, and remaining good do not decide

Failure: no good IDs decide

> t/n

Our Algorithm

1. Each ID becomes active with probability

2. Active IDs try to solve Byzantine agreement

3. If fail, then , goto step 1

p ← (log n)/n

p

p ← 2p

Implicit Agreement
Success: fraction of good IDs decide on
correct bit, and remaining good do not decide

Failure: no good IDs decide

> t/n
Promise Agreement
Implicit Agreement output:

Success all IDs decide correctly
Failure no IDs decide

→
→

Our Algorithm

Implicit Agreement (Effort = p)
Success: fraction of good IDs decide on
correct bit, and remaining good do not decide

Failure: no good IDs decide

> t/n

p ← (C log n)/n

Our Algorithm

Implicit Agreement (Effort = p)
Success: fraction of good IDs decide on
correct bit, and remaining good do not decide

Failure: no good IDs decide

> t/n

p ← (C log n)/n

Promise Agreement
Implicit Agreement output:

Success all IDs decide correctly
Failure no IDs decide

→
→

Our Algorithm

Implicit Agreement (Effort = p)
Success: fraction of good IDs decide on
correct bit, and remaining good do not decide

Failure: no good IDs decide

> t/n

p ← (C log n)/n

p ← 2pp <
1

C log n
?

If fail:

If Success:
DONE

Promise Agreement
Implicit Agreement output:

Success all IDs decide correctly
Failure no IDs decide

→
→

Our Algorithm

Implicit Agreement (Effort = p)
Success: fraction of good IDs decide on
correct bit, and remaining good do not decide

Failure: no good IDs decide

> t/n

p ← (C log n)/n

Heavy-weight BA

Y

N

p ← 2pp <
1

C log n
?

If fail:

If Success:
DONE

Promise Agreement
Implicit Agreement output:

Success all IDs decide correctly
Failure no IDs decide

→
→

Implicit Agreement (Effort = p)
Success: fraction of good IDs decide on
correct bit, and remaining good do not decide

Failure: no good IDs decide

> t/n

p ← (C log n)/n

p ← 2p

Heavy-weight BA

p <
1

C log n
?

Promise Agreement
Implicit Agreement output:

Success all IDs decide correctly
Failure no IDs decide

→
→

If fail:
Y

N

If Success:
DONE

If adversary sends messages,
then Implicit Agreement succeeds

≤ pn2

Our Algorithm

Implicit Agreement
Each ID is active with probability p; broadcasts its ID

Each active ID, x, sets IDs received

Use LARGE-CORE-BA among the active IDs

Sx ←

Implicit Agreement
Each ID is active with probability p; broadcasts its ID

Each active ID, x, sets IDs received

Use LARGE-CORE-BA among the active IDs

Sx ←

LARGE-CORE-BA:

Ensures agreement among nodes whose
views “mostly” overlap

Requires IDs in range , for fixed k[0,nk]

LARGE-CORE-BA (LCBA)

Lemma 1. Assume:

G = good IDs, B = bad IDs, i.e.

; B/G bounded away from 1/2

Then all but fraction reach agreement in:

Latency and per ID message cost polylog(|G|+|B|)

With high probability in |G| + |B|

∪x∈G Sx

G ⊆x Sx

1/log n

Sx

G

SySy

Sz

Two problems

Problem 1: How does each active ID maintain a
set to meet LCBA requirements?

Problem 2: How can active IDs agree on whether
conditions are favorable for agreement?

Sx

Problem 1: Meeting
LCBA requirements

Need |B|/|G| < 1/2 unless adversary sends messages,
where is # active nodes

Naive: ID x adds to all IDs that it receives message from

But: Adversary can make |B| = , by sending only messages

Ω(nA)
A = pn

Sx

A2 A2

Sx

G

SySy

Problem 1: Meeting
LCBA requirements

Need |B|/|G| < 1/2 unless adversary sends messages,
where is # active nodes

Naive: ID x adds to all IDs that it receives message from

But: Adversary can make |B| = , by sending only messages

Ω(nA)
A = pn

Sx

A2 A2

Sx

G

SySy

Problem 1: Meeting
LCBA requirements

Need |B|/|G| < 1/2 unless adversary sends messages,
where is # active nodes

Naive: ID x adds to all IDs that it receives message from

But: Adversary can make |B| = , by sending only messages

Ω(nA)
A = pn

Sx

A2 A2

Sx

G

SySy

Instead: Use non-active IDs to help out.

Need |B|/|G| < 1/2, unless adversary
sends messagesΩ(n2p)

G

Good ID is light if received ~np messages

Need |B|/|G| < 1/2, unless adversary
sends messagesΩ(n2p)

G

Good ID is light if received ~np messages

Light IDs send info about sets to IDs in Sx Sx

Need |B|/|G| < 1/2, unless adversary
sends messagesΩ(n2p)

G

Good ID is light if received ~np messages

Light IDs send info about sets to IDs in Sx Sx

Can’t send all IDs in ; Instead send a sampleSx

Need |B|/|G| < 1/2, unless adversary
sends messagesΩ(n2p)

G

Good ID is light if received ~np messages

Light IDs send info about sets to IDs in Sx Sx

Can’t send all IDs in ; Instead send a sampleSx

Problem: Adversary can still easily make set B (all
bad nodes in sets) too largeSx

Need |B|/|G| < 1/2, unless adversary
sends messagesΩ(n2p)

G

G
Need |B|/|G| < 1/2, unless adversary
sends messagesΩ(n2p)

Problem: Adversary can still easily make set B (all
bad nodes in sets) too largeSx

G
Need |B|/|G| < 1/2, unless adversary
sends messagesΩ(n2p)

Problem: Adversary can still easily make set B (all
bad nodes in sets) too largeSx

Validation step: each active ID x, for each
queries random IDs to see if they have in
their own set

y ∈ Sx
Θ(log n) y

S

G
Need |B|/|G| < 1/2, unless adversary
sends messagesΩ(n2p)

Problem: Adversary can still easily make set B (all
bad nodes in sets) too largeSx

Validation step: each active ID x, for each
queries random IDs to see if they have in
their own set

y ∈ Sx
Θ(log n) y

S

Filter out IDs from that are not in enough samplesSx

G
Need |B|/|G| < 1/2, unless adversary
sends messagesΩ(n2p)

Validation step: each active ID x, for each queries
random IDs to see if they have in their own set

Filter out IDs from that not in enough samples

y ∈ Sx Θ(log n)
y S

Sx

 active
(& good)

good &
 active¬

bad

Validation step: each active ID x, for each queries
random IDs to see if they have in their own set

Filter out IDs from that not in enough samples

y ∈ Sx Θ(log n)
y S

Sx

 active
(& good)

good &
 active¬

bad

Every active ID, x,
queries
random IDs to filter

Θ(log n)
Sx

Problem 2: Ready? - How do active
IDs agree on whether conditions
favorable for agreement?

Problem 2: Ready?
G

Problem 2: Ready?
Naive: use LCBA to determine Ready?

G

Problem 2: Ready?
Naive: use LCBA to determine Ready?

Problem: Some active IDs run LCBA, but others don’t
have small enough to run itSx

G

Problem 2: Ready?
Naive: use LCBA to determine Ready?

Problem: Some active IDs run LCBA, but others don’t
have small enough to run itSx

Solution: Need careful decisions about: (1) input; (2)
whether will run LCBA; (3) whether will trust LCBA

G

Problem 2: Ready?
Naive: use LCBA to determine Ready?

Problem: Some active IDs run LCBA, but others don’t
have small enough to run itSx

Solution: Need careful decisions about: (1) input; (2)
whether will run LCBA; (3) whether will trust LCBA

IDs sometimes run LCBA, even when they plan to
ignore output, since other IDs counting on them

G

Problem 2: Ready?
Naive: use LCBA to determine Ready?

Problem: Some active IDs run LCBA, but others don’t
have small enough to run itSx

Solution: Need careful decisions about: (1) input; (2)
whether will run LCBA; (3) whether will trust LCBA

IDs sometimes run LCBA, even when they plan to
ignore output, since other IDs counting on them

G

If “Ready?” output = yes, IDs run LCBA again for agreement

All active IDs then broadcast Ready? bit and Agreement bit

Ready-in = 0

G

LCBA for
“Ready-out” bit

Ready-in = 1

Ready-in = 0

G

LCBA for
“Ready-out” bit

Ready-in = 1

LCBA for agreement
“value” bit

G

Ready-in = 0

G

LCBA for
“Ready-out” bit

Ready-in = 1

LCBA for agreement
“value” bit

G

…

Every active ID
broadcasts its

(ready-out,value)
bits

Active IDs
sample
to validate

Θ(log n)
Sx

G

LCBA for “Ready-out” bit

Active IDs
sample
to validate

Θ(log n)
Sx

G

LCBA for “Ready-out” bit

LCBA for “value” bit

G

Active IDs
sample
to validate

Θ(log n)
Sx

G

LCBA for “Ready-out” bit

LCBA for “value” bit

G

…

Active IDs
broadcast
(ready-out,value)

Active IDs
sample
to validate

Θ(log n)
Sx

Implicit Agreement

Either:
(1) > t/n good IDs decide; or
(2) no good IDs decide

Implicit Agreement

Either:
(1) > t/n good IDs decide; or
(2) no good IDs decide

What next?

Implicit Agreement

Either:
(1) > t/n good IDs decide; or
(2) no good IDs decide

Implicit Agreement

Promise Agreement

Either:
(1) > t/n good IDs decide; or
(2) no good IDs decide

Implicit Agreement

Promise Agreement

Everyone samples

Either:
(1) > t/n good IDs decide; or
(2) no good IDs decide

Implicit Agreement

Every good ID samples
 IDs for their

(ready-out, value) bits
Θ(log n)

Either:
(1) > t/n good IDs decide; or
(2) no good IDs decide

Implicit Agreement Promise Agreement

Every good ID samples
 IDs for their

(ready-out, value) bits
Θ(log n)

Either:
(1) > t/n good IDs decide; or
(2) no good IDs decide

Entire Algorithm

Initialize

p ← (C log n)/n

Implicit Agreement

Initialize

p ← (C log n)/n

Implicit Agreement

Promise Agreement

Sample
for (ready-out, value)

Θ(log n)

Initialize

p ← (C log n)/n

Implicit Agreement

If fail:

p ← 2p

If success:

DONE!

Promise Agreement

Sample
for (ready-out, value)

Θ(log n)

Initialize

p ← (C log n)/n

Implicit Agreement

If fail:

p ← 2p

If success:

DONE!

Promise Agreement

Sample
for (ready-out, value)

Θ(log n)

Heavy-weight

Byzantine agreement

Y

N

p <
1

C log n
?

Conclusion

Can solve Byzantine agreement in with:

 latency

 expected messages

KT0

O(polylog(n))

O((T + n)log n)

T = min(n2, # bits sent by adversary)

Can solve Byzantine agreement in with:

 latency

 expected messages

KT0

O(polylog(n))

O((T + n)log n)

T = min(n2, # bits sent by adversary)
Communication with strangers only occurs via:

(1) broadcast to all strangers; (2) writing to random stranger

Can solve Byzantine agreement in with:

 latency

 expected messages

KT0

O(polylog(n))

O((T + n)log n)

T = min(n2, # bits sent by adversary)

Almost matching lower bounds for polylog(n) round algs

Non-trivial lower-bound for all Las Vegas algorithms

Communication with strangers only occurs via:

(1) broadcast to all strangers; (2) writing to random stranger

Future Work

(1) Closing gap between upper and lower bounds for
randomized algorithms:

Know: If for , then any Las
Vegas algorithm sends bits in expectation

But, our algorithm sends bits in this case

T = n1+α α ∈ (0,1]
Ω(n1+α/2)

O(n1+α)

(1) Closing gap between upper and lower bounds for
randomized algorithms:

Know: If for , then any Las
Vegas algorithm sends bits in expectation

But, our algorithm sends bits in this case

T = n1+α α ∈ (0,1]
Ω(n1+α/2)

O(n1+α)

(2) Can we adapt our algorithm to better handle
churn in permissionless networks?

Need a good model of churn

Thanks!

