Scalable and Secure Computation Among Strangers: Message-Competitive Byzantine Protocols

Joint with: John Augustine, Valerie King, Anisur Rahaman Molla, and Gopal Pandurangan

Jared Saia

Permissionless Networks

join and leave at will

sub-quadratic messages

- Permissionless networks are large; nodes
- Nodes are known by self-generated IDs
- Adversarial (Byzantine) IDs common
- Goal: Solve coordination problems with

Scalability

nodes send $\tilde{O}(n)$ messages total

IDs of all neighbors.

One step is to extend it to KT_0 model

- Recent work* ensures solutions to Byzantine agreement/leader election where good
- Assume *KT*₁ *model*: Each good node knows
- How can we extend this result to churn?

Scalability

nodes send $\tilde{O}(n)$ messages total

IDs of all neighbors.

One step is to extend it to KT₀ model

*Braud-Santoni, et al. PODC '13

- Recent work* ensures solutions to Byzantine agreement/leader election where good
- Assume *KT*₁ *model*: Each good node knows
- How can we extend this result to churn?

Nodes don't know their neighbors a priori

But they do learn a neighbors ID upon receiving a message from it

Can convert KT_0 to KT_1 :

But this is $\Theta(n^2)$ messages

KTO Model

- Initial step where each node communicates with all neighbors solely to learn IDs

Can we design Byzantine agreement/leader election protocols that require sub-quadratic messages in KT_0 ?

Adversary is static, rushing and computationally-unbounded.

nodes choose their IDs.

Synchronous, fully-connected KT₀ model

Our Model

n nodes have distinct IDs in $[1,n^k]$. Byzantine

Theorem: Our algorithm solves Byzantine agreement, leader and committee election in KT_0 with:

O(polylog(n)) latency $O((T+n)\log n)$ expected messages $T = \min(n^2, \# \text{ bits sent by adversary})$

Theorem: Our algorithm solves Byzantine agreement, leader and committee election in KT_0 with:

O(polylog(n)) latency $O((T+n)\log n)$ expected messages

 $T = \min(n^2, \# \text{ bits sent by adversary})$

Handles < 1/4 fraction of Byzantine faults

Succeeds with probability $1 - \frac{1}{n^c}$ for any fixed, positive c

leader and committee election in KT_0 with:

 $O((T + n)\log n)$ expected messages

 $T = \min(n^2, \# \text{ bits sent by adversary})$

Handles < 1/4 fraction of Byzantine faults

Succeeds with probability $1 - \frac{1}{n^c}$ for any fixed, positive c

- **Theorem**: Our algorithm solves Byzantine agreement,
- O(polylog(n)) latency Holds even in CONGEST

Talking to Strangers

In fact, our algorithm only writes to unknown IDs (strangers) via two primitives:

(1) Random stranger

(2) All strangers

LB for polylog(n) rounds

In CONGEST, $\tilde{O}(n)$ bits can be sent by Byzantine nodes in poylog(n) rounds

In CONGEST, $\tilde{O}(n)$ bits can be sent by Byzantine nodes in poylog(n) rounds

Thus, $T = \tilde{O}(tn)$

In CONGEST, $\tilde{O}(n)$ bits can be sent by Byzantine nodes in poylog(n) rounds

Thus, $T = \tilde{O}(tn)$

So $\tilde{\Omega}(T)$ messages needed for polylog(n) round algorithms in CONGEST

In CONGEST, $\tilde{O}(n)$ bits can be sent by Byzantine nodes in poylog(n) rounds

Thus, $T = \tilde{O}(tn)$

So $\Omega(T)$ messages needed for polylog(n) round algorithms in CONGEST Even for algs succeeding whp

In CONGEST, $\tilde{O}(n)$ bits can be sent by Byzantine nodes in poylog(n) rounds

Thus, $T = \tilde{O}(tn)$

algorithms in CONGEST

So $\Omega(T)$ messages needed for polylog(n) round Our alg optimal up to log terms

LB for Deterministic

LB for Deterministic

total bits. (also for KT_1)

Theorem: For $T = O(n^2)$ bits sent by Byzantine nodes, any deterministic algorithm sends $\Omega(T)$

LB for Deterministic

Theorem: For $T = O(n^2)$ bits sent by Byzantine nodes, any *deterministic* algorithm sends $\Omega(T)$ total bits. (also for KT₁)

Also show that if $T = n^{1+\alpha}$ for $\alpha \in (0,1]$, then any Las Vegas algorithm sends $\Omega(n^{1+\alpha/2})$ bits in expectation

This talk: Byzantine agreement only Paper: Leader and committee election

$p \leftarrow (\log n)/n$ 1. Each ID becomes 2. Active IDs try to sc 3. If fail, then n < 2n

- 1. Each ID becomes active with probability p
- 2. Active IDs try to solve Byzantine agreement
- 3. If fail, then $p \leftarrow 2p$, goto step 1

$p \leftarrow (\log n)/n$ 1. Each ID becomes 2. Active IDs try to sc 3. If fail, then n < 2n

- 1. Each ID becomes active with probability p
- 2. Active IDs try to solve Byzantine agreement
- 3. If fail, then $p \leftarrow 2p$, goto step 1

$p \leftarrow (\log n)/n$ 3. If fail, then $p \leftarrow 2p$, goto step 1

Implicit Agreement

Success: > t/n fraction of good IDs decide on correct bit, and remaining good do not decide

Failure: no good IDs decide

1. Each ID becomes active with probability p

2. Active IDs try to solve Byzantine agreement

$p \leftarrow (\log n)/n$ '3. If fail, then $p \leftarrow 2p$, goto step 1

Implicit Agreement

Success: > t/n fraction of good IDs decide on correct bit, and remaining good do not decide

Failure: no good IDs decide

1. Each ID becomes active with probability p

2. Active IDs try to solve Byzantine agreement

Promise Agreement Implicit Agreement output:

Success \rightarrow all IDs decide correctly Failure \rightarrow no IDs decide

$p \leftarrow (C \log n)/n$

Implicit Agreement (Effort = p)

Success: > t/n fraction of good IDs decide on correct bit, and remaining good do not decide

Failure: no good IDs decide

$p \leftarrow (C \log n)/n$

Implicit Agreement (Effort = p)

Success: > t/n fraction of good IDs decide on correct bit, and remaining good do not decide

Failure: no good IDs decide

Promise Agreement Implicit Agreement output:

Success→all IDs decide correctly Failure → no IDs decide

$p \leftarrow (C \log n)/n$

Implicit Agreement (Effort = p)

Success: > t/n fraction of good IDs decide on correct bit, and remaining good do not decide

Failure: no good IDs decide

Promise Agreement Implicit Agreement output:

Success→all IDs decide correctly Failure \rightarrow no IDs decide

If Success: DONE

$p \leftarrow (C \log n)/n$

Implicit Agreement (Effort = p)

Success: > t/n fraction of good IDs decide on correct bit, and remaining good do not decide

Failure: no good IDs decide

Heavy-weight BA

Promise Agreement Implicit Agreement output:

Success→all IDs decide correctly Failure \rightarrow no IDs decide

If Success: DONE

$p \leftarrow (C \log n)/n$

Implicit Agreement (Effort = p)

Success: > t/n fraction of good IDs decide on correct bit, and remaining good do not decide

Failure: no good IDs decide

If adversary sends $\leq pn^2$ messages, then Implicit Agreement succeeds

Heavy-weight BA

Promise Agreement Implicit Agreement output:

Success→all IDs decide correctly Failure \rightarrow no IDs decide

If Success: DONE

Implicit Agreement

- Each ID is *active* with probability p; broadcasts its ID
- Each active ID, x, sets $S_x \leftarrow \mathsf{IDs}$ received
- Use LARGE-CORE-BA among the active IDs

Implicit Agreement

LARGE-CORE-BA:

views "mostly" overlap

- Each ID is *active* with probability p; broadcasts its ID
- Each active ID, x, sets $S_x \leftarrow IDs$ received
- Use LARGE-CORE-BA among the active IDs
 - Ensures agreement among nodes whose
 - Requires IDs in range $[0,n^k]$, for fixed k

LARGE-CORE-BA (LCBA)

Lemma 1. Assume: $G = good IDs, B = bad IDs, i.e. \cup_{x \in G} S_x$ $G \subseteq_x S_x$; B/G bounded away from 1/2 Then all but 1/log *n* fraction reach agreement in: With high probability in |G| + |B|

- Latency and per ID message cost polylog(|G|+|B|)

Two problems

set S_r to meet LCBA requirements?

conditions are favorable for agreement?

- Problem 1: How does each active ID maintain a
- **Problem 2**: How can active IDs agree on whether
Problem 1: Meeting LCBA requirements

where A = pn is # active nodes

Naive: ID x adds to S_{x} all IDs that it receives message from

But: Adversary can make $|B| = A^2$, by sending only A^2 messages \frown

Need |B|/|G| < 1/2 unless adversary sends $\Omega(nA)$ messages,

Problem 1: Meeting LCBA requirements

Need |B|/|G| < 1/2 unless adversary sends $\Omega(nA)$ messages, where A = pn is # active nodes

Naive: ID x adds to S_{x} all IDs that it receives message from

But: Adversary can make $|B| = A^2$, by sending only A^2 messages

 S_{x}

Problem 1: Meeting LCBA requirements

Need |B|/|G| < 1/2 unless adversary sends $\Omega(nA)$ messages, where A = pn is # active nodes

Naive: ID x adds to S_{x} all IDs that it receives message from

Instead: Use non-active IDs to help out.

- But: Adversary can make $|B| = A^2$, by sending only A^2 messages

 S_{x}

Need |B|/|G| < 1/2, unless adversary sends $\Omega(n^2p)$ messages

Need |B|/|G| < 1/2, unless adversary sends $\Omega(n^2p)$ messages

Good ID is *light* if received ~np messages

Good ID is *light* if received ~np messages Light IDs send info about S_x sets to IDs in S_x

Good ID is *light* if received ~np messages Light IDs send info about S_x sets to IDs in S_x Can't send all IDs in S_x ; Instead send a sample

Need |B|/|G| < 1/2, unless adversary sends $\Omega(n^2p)$ messages

Good ID is *light* if received ~np messages Light IDs send info about S_r sets to IDs in S_r Can't send all IDs in S_x ; Instead send a sample bad nodes in S_x sets) too large

- Problem: Adversary can still easily make set B (all

Need |B|/|G| < 1/2, unless adversary sends $\Omega(n^2p)$ messages

bad nodes in S_x sets) too large

Problem: Adversary can still easily make set B (all

bad nodes in S_x sets) too large

Validation step: each active ID x, for each $y \in S_{x}$ their own S set

- **Problem:** Adversary can still easily make set B (all
- queries $\Theta(\log n)$ random IDs to see if they have y in

bad nodes in S_x sets) too large

Validation step: each active ID x, for each $y \in S_{x}$ their own S set

- **Problem:** Adversary can still easily make set B (all
- queries $\Theta(\log n)$ random IDs to see if they have y in

Filter out IDs from S_{r} that are not in enough samples

Validation step: each active ID x, for each $y \in S_x$ queries $\Theta(\log n)$ random IDs to see if they have y in their own S set Filter out IDs from S_x that not in enough samples active (& good) good & ¬active bad

Validation step: each active ID x, for each $y \in S_x$ queries $\Theta(\log n)$ random IDs to see if they have y in their own S set Filter out IDs from S_x that not in enough samples active (& good) Every active ID, x, queries $\Theta(\log n)$ random IDs to filter S_{r} good & *¬active* bad

Problem 2: Ready? - How do active IDs agree on whether conditions favorable for agreement?

Problem 2: Ready? Naive: use LCBA to determine Ready?

Naive: use LCBA to determine Ready?

have small enough S_x to run it

Problem: Some active IDs run LCBA, but others don't

Naive: use LCBA to determine Ready?

Problem: Some active IDs run LCBA, but others don't have small enough S_x to run it

Solution: Need careful decisions about: (1) input; (2) whether will run LCBA; (3) whether will trust LCBA

Naive: use LCBA to determine Ready?

Problem: Some active IDs run LCBA, but others don't have small enough S_x to run it

Solution: Need careful decisions about: (1) input; (2) whether will run LCBA; (3) whether will trust LCBA

IDs sometimes run LCBA, even when they plan to ignore output, since other IDs counting on them

Naive: use LCBA to determine Ready?

Problem: Some active IDs run LCBA, but others don't have small enough S_x to run it

Solution: Need careful decisions about: (1) input; (2) whether will run LCBA; (3) whether will trust LCBA

IDs sometimes run LCBA, even when they plan to ignore output, since other IDs counting on them

If "Ready?" output = yes, IDs run LCBA again for agreement

All active IDs then broadcast Ready? bit and Agreement bit

LCBA for "Ready-out" bit

LCBA for "Ready-out" bit

LCBA for agreement "value" bit

LCBA for "Ready-out" bit

Every active ID broadcasts its (ready-out,value) bits

LCBA for agreement "value" bit

LCBA for "Ready-out" bit

LCBA for "value" bit

LCBA for "Ready-out" bit

LCBA for "value" bit

LCBA for "Ready-out" bit

Active IDs

to validate S_x

sample $\Theta(\log n)$

LCBA for "Ready-out" bit

Implicit Agreement

Active IDs

to validate S_x

sample $\Theta(\log n)$

LCBA for "Ready-out" bit

Implicit Agreement

What next?

Active IDs

to validate S_x

sample $\Theta(\log n)$

LCBA for "Ready-out" bit

Implicit Agreement

Active IDs

to validate S_x

sample $\Theta(\log n)$

LCBA for "Ready-out" bit

Implicit Agreement

Active IDs

to validate S_x

sample $\Theta(\log n)$

LCBA for "Ready-out" bit

Implicit Agreement

Promise Agreement

Everyone samples

Active IDs

to validate S_x

sample $\Theta(\log n)$

LCBA for "Ready-out" bit

Implicit Agreement

Every good ID samples $\Theta(\log n)$ IDs for their (ready-out, value) bits

Active IDs

to validate S_x

sample $\Theta(\log n)$

Implicit Agreement

Promise Agreement

Every good ID samples $\Theta(\log n)$ IDs for their (ready-out, value) bits

Entire Algorithm

▼ If success: DONE!

Conclusion

Can solve Byzantine agreement in KT_0 with: O(polylog(n)) latency $O((T + n)\log n)$ expected messages $T = \min(n^2, \# \text{ bits sent by adversary})$

Can solve Byzantine agreement in KT_0 with: O(polylog(n)) latency $O((T + n)\log n)$ expected messages $T = \min(n^2, \# \text{ bits sent by adversary})$ Communication with strangers only occurs via:

- (1) broadcast to all strangers; (2) writing to random stranger

Can solve Byzantine agreement in KT_0 with: O(polylog(n)) latency $O((T + n)\log n)$ expected messages $T = \min(n^2, \# \text{ bits sent by adversary})$ Communication with strangers only occurs via: Non-trivial lower-bound for all Las Vegas algorithms

- (1) broadcast to all strangers; (2) writing to random stranger
- Almost matching lower bounds for polylog(n) round algs

(1) Closing gap between upper and lower bounds for randomized algorithms:

But, our algorithm sends $O(n^{1+\alpha})$ bits in this case

Know: If $T = n^{1+\alpha}$ for $\alpha \in (0,1]$, then any Las Vegas algorithm sends $\Omega(n^{1+\alpha/2})$ bits in expectation

(1) Closing gap between upper and lower bounds for randomized algorithms:

(2) Can we adapt our algorithm to better handle churn in permissionless networks?

Need a good model of churn

Know: If $T = n^{1+\alpha}$ for $\alpha \in (0,1]$, then any Las Vegas algorithm sends $\Omega(n^{1+\alpha/2})$ bits in expectation

But, our algorithm sends $O(n^{1+\alpha})$ bits in this case

Thanks