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Permissionless Networks

Permissionless networks are large; nodes 
join and leave at will 

Nodes are known by self-generated IDs 

Adversarial (Byzantine) IDs common 

Goal: Solve coordination problems with 
sub-quadratic messages



Scalability
Recent work* ensures solutions to Byzantine 
agreement/leader election where good 
nodes send  messages total 

Assume  model: Each good node knows 
IDs of all neighbors. 

How can we extend this result to churn? 

One step is to extend it to  model

Õ(n)

KT1

KT0
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*Braud-Santoni, et al. PODC ‘13



 ModelKT0
Nodes don’t know their neighbors a priori 

But they do learn a neighbors ID upon 
receiving a message from it 

Can convert  to : 

Initial step where each node communicates 
with all neighbors solely to learn IDs 

But this is  messages

KT0 KT1

Θ(n2)



Can we design Byzantine agreement/leader 
election protocols that require sub-quadratic 
messages in ?KT0



Our Model

Adversary is static, rushing and 
computationally-unbounded. 

n nodes have distinct IDs in .  Byzantine 
nodes choose their IDs. 

Synchronous, fully-connected  model

[1,nk]

KT0



Upper Bound
Theorem: Our algorithm solves Byzantine agreement, 
leader and committee election in  with: 

 latency 

 expected messages 

KT0

O(polylog(n))

O((T + n)log n)

T = min(n2, # bits sent by adversary)
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 latency 
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KT0

O(polylog(n))

O((T + n)log n)

T = min(n2, # bits sent by adversary)

Handles  fraction of Byzantine faults 

Succeeds with probability  for any fixed, positive c

< 1/4
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1
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Holds even in CONGEST



Talking to Strangers

In fact, our algorithm only writes to unknown 
IDs (strangers) via two primitives: 

(1) Random stranger 

(2) All strangers
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LB for polylog(n) rounds
 messages needed when  bad nodes 

[Hadzilacos and Halpern, 91 ]
Ω(nt) t ≤ n

In CONGEST,  bits can be sent by 
Byzantine nodes in poylog(n) rounds

Õ(n)

Thus, T = Õ(tn)

So  messages needed for polylog(n) round 
algorithms in CONGEST

Ω̃(T)

Even for algs succeeding whp 
Our alg optimal up to log terms
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LB for Deterministic

Theorem: For  bits sent by Byzantine 
nodes, any deterministic algorithm sends  
total bits.  (also for )

T = O(n2)
Ω(T)

KT1

Also show that if  for , then 
any Las Vegas algorithm sends  bits in 
expectation

T = n1+α α ∈ (0,1]
Ω(n1+α/2)



Upper Bound



Upper Bound

This talk: Byzantine agreement only 
Paper: Leader and committee election



Our Algorithm
 

1. Each ID becomes active with probability  

2. Active IDs try to solve Byzantine agreement  

3. If fail, then , goto step 1

p ← (log n)/n
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Implicit Agreement (Effort = p) 
Success:  fraction of good IDs decide on 
correct bit, and remaining good do not decide 
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> t/n

p ← (C log n)/n
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DONE
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Implicit Agreement (Effort = p) 
Success:  fraction of good IDs decide on 
correct bit, and remaining good do not decide 

Failure: no good IDs decide

> t/n

p ← (C log n)/n

p ← 2p

Heavy-weight BA

p <
1

C log n
?

Promise Agreement 
Implicit Agreement output: 

Success all IDs decide correctly 
Failure  no IDs decide

→
→

If fail:
Y

N

If Success: 
DONE

If adversary sends  messages, 
then Implicit Agreement succeeds

≤ pn2

Our Algorithm



Implicit Agreement
Each ID is active with probability p; broadcasts its ID 

Each active ID, x, sets  IDs received 

Use LARGE-CORE-BA among the active IDs

Sx ←



Implicit Agreement
Each ID is active with probability p; broadcasts its ID 

Each active ID, x, sets  IDs received 

Use LARGE-CORE-BA among the active IDs

Sx ←

LARGE-CORE-BA: 

Ensures agreement among nodes whose 
views “mostly” overlap 

Requires IDs in range , for fixed k[0,nk]



LARGE-CORE-BA (LCBA)

Lemma 1. Assume: 

G = good IDs, B = bad IDs, i.e.  

; B/G bounded away from 1/2 

Then all but  fraction reach agreement in: 

Latency and per ID message cost polylog(|G|+|B|) 

With high probability in |G| + |B|

∪x∈G Sx

G ⊆x Sx

1/log n

Sx

G

SySy

Sz



Two problems

Problem 1: How does each active ID maintain a 
set  to meet LCBA requirements? 

Problem 2: How can active IDs agree on whether 
conditions are favorable for agreement?

Sx



Problem 1: Meeting 
LCBA requirements

Need |B|/|G| < 1/2 unless adversary sends  messages, 
where  is # active nodes 

Naive: ID x adds to  all IDs that it receives message from 

But: Adversary can make |B| = , by sending only  messages

Ω(nA)
A = pn
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Problem 1: Meeting 
LCBA requirements

Need |B|/|G| < 1/2 unless adversary sends  messages, 
where  is # active nodes 

Naive: ID x adds to  all IDs that it receives message from 

But: Adversary can make |B| = , by sending only  messages

Ω(nA)
A = pn

Sx

A2 A2

Sx

G

SySy

Instead: Use non-active IDs to help out.
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sends  messagesΩ(n2p)
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Validation step: each active ID x, for each  queries  
random IDs to see if they have  in their own  set 

Filter out IDs from  that not in enough samples

y ∈ Sx Θ(log n)
y S

Sx

 active 
(& good)

good & 
 active¬

bad

Every active ID, x, 
queries  
random IDs to filter 

Θ(log n)
Sx



Problem 2: Ready? - How do active 
IDs agree on whether conditions 
favorable for agreement?



Problem 2: Ready?
G



Problem 2: Ready?
Naive: use LCBA to determine Ready?

G



Problem 2: Ready?
Naive: use LCBA to determine Ready?

Problem: Some active IDs run LCBA, but others don’t 
have small enough  to run itSx

G



Problem 2: Ready?
Naive: use LCBA to determine Ready?

Problem: Some active IDs run LCBA, but others don’t 
have small enough  to run itSx

Solution: Need careful decisions about: (1) input; (2) 
whether will run LCBA; (3) whether will trust LCBA

G



Problem 2: Ready?
Naive: use LCBA to determine Ready?

Problem: Some active IDs run LCBA, but others don’t 
have small enough  to run itSx

Solution: Need careful decisions about: (1) input; (2) 
whether will run LCBA; (3) whether will trust LCBA

IDs sometimes run LCBA, even when they plan to 
ignore output, since other IDs counting on them

G



Problem 2: Ready?
Naive: use LCBA to determine Ready?

Problem: Some active IDs run LCBA, but others don’t 
have small enough  to run itSx

Solution: Need careful decisions about: (1) input; (2) 
whether will run LCBA; (3) whether will trust LCBA

IDs sometimes run LCBA, even when they plan to 
ignore output, since other IDs counting on them

G

If “Ready?” output = yes, IDs run LCBA again for agreement 

All active IDs then broadcast Ready? bit and Agreement bit
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LCBA for 
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Ready-in = 1

LCBA for agreement 
“value” bit

G

…

Every active ID 
broadcasts its 

(ready-out,value) 
bits
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LCBA for “Ready-out” bit
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G

…

Active IDs 
broadcast 
(ready-out,value)

Active IDs 
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to validate 
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Sx



Implicit Agreement

Either: 
(1) > t/n good IDs decide; or 
(2) no good IDs decide



Implicit Agreement

Either: 
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Implicit Agreement

Either: 
(1) > t/n good IDs decide; or 
(2) no good IDs decide



Implicit Agreement

Promise Agreement

Either: 
(1) > t/n good IDs decide; or 
(2) no good IDs decide



Implicit Agreement

Promise Agreement

Everyone samples

Either: 
(1) > t/n good IDs decide; or 
(2) no good IDs decide



Implicit Agreement

Every good ID samples 
 IDs for their 

(ready-out, value) bits
Θ(log n)

Either: 
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Implicit Agreement Promise Agreement

Every good ID samples 
 IDs for their 

(ready-out, value) bits
Θ(log n)

Either: 
(1) > t/n good IDs decide; or 
(2) no good IDs decide
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Initialize

p ← (C log n)/n

Implicit Agreement

If fail: 

p ← 2p

If success: 

DONE!

Promise Agreement

Sample  
for (ready-out, value)

Θ(log n)

Heavy-weight

Byzantine agreement

Y

N

p <
1

C log n
?
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Can solve Byzantine agreement in  with: 

 latency 

 expected messages 

KT0

O(polylog(n))

O((T + n)log n)

T = min(n2, # bits sent by adversary)

Almost matching lower bounds for polylog(n) round algs 

Non-trivial lower-bound for all Las Vegas algorithms

Communication with strangers only occurs via: 

(1) broadcast to all strangers; (2) writing to random stranger
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Vegas algorithm sends  bits in expectation 
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(1) Closing gap between upper and lower bounds for 
randomized algorithms: 

Know: If  for , then any Las 
Vegas algorithm sends  bits in expectation 

But, our algorithm sends  bits in this case

T = n1+α α ∈ (0,1]
Ω(n1+α/2)

O(n1+α)

(2) Can we adapt our algorithm to better handle 
churn in permissionless networks? 

Need a good model of churn



Thanks!


